forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add utils for DP native model format
Split from deepmodeling#2987. Signed-off-by: Jinzhe Zeng <[email protected]>
- Loading branch information
Showing
2 changed files
with
313 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
"""Native DP model format for multiple backends. | ||
See issue #2982 for more information. | ||
""" | ||
import json | ||
from typing import ( | ||
List, | ||
Optional, | ||
) | ||
|
||
import h5py | ||
import numpy as np | ||
|
||
try: | ||
from deepmd_utils._version import version as __version__ | ||
except ImportError: | ||
__version__ = "unknown" | ||
|
||
|
||
def traverse_model_dict(model_obj, callback: callable, is_variable: bool = False): | ||
"""Traverse a model dict and call callback on each variable. | ||
Parameters | ||
---------- | ||
model_obj : object | ||
The model object to traverse. | ||
callback : callable | ||
The callback function to call on each variable. | ||
is_variable : bool, optional | ||
Whether the current node is a variable. | ||
Returns | ||
------- | ||
object | ||
The model object after traversing. | ||
""" | ||
if isinstance(model_obj, dict): | ||
for kk, vv in model_obj.items(): | ||
model_obj[kk] = traverse_model_dict( | ||
vv, callback, is_variable=is_variable or kk == "@variables" | ||
) | ||
elif isinstance(model_obj, list): | ||
for ii, vv in enumerate(model_obj): | ||
model_obj[ii] = traverse_model_dict(vv, callback, is_variable=is_variable) | ||
elif is_variable: | ||
model_obj = callback(model_obj) | ||
return model_obj | ||
|
||
|
||
class Counter: | ||
"""A callable counter. | ||
Examples | ||
-------- | ||
>>> counter = Counter() | ||
>>> counter() | ||
0 | ||
>>> counter() | ||
1 | ||
""" | ||
|
||
def __init__(self): | ||
self.count = -1 | ||
|
||
def __call__(self): | ||
self.count += 1 | ||
return self.count | ||
|
||
|
||
def save_dp_model(filename: str, model_dict: dict, extra_info: Optional[dict] = None): | ||
"""Save a DP model to a file in the native format. | ||
Parameters | ||
---------- | ||
filename : str | ||
The filename to save to. | ||
model_dict : dict | ||
The model dict to save. | ||
extra_info : dict, optional | ||
Extra meta information to save. | ||
""" | ||
model_dict = model_dict.copy() | ||
variable_counter = Counter() | ||
if extra_info is not None: | ||
extra_info = extra_info.copy() | ||
else: | ||
extra_info = {} | ||
with h5py.File(filename, "w") as f: | ||
model_dict = traverse_model_dict( | ||
model_dict, | ||
lambda x: f.create_dataset( | ||
f"variable_{variable_counter():04d}", data=x | ||
).name, | ||
) | ||
save_dict = { | ||
"model": model_dict, | ||
"software": "deepmd-kit", | ||
"version": __version__, | ||
**extra_info, | ||
} | ||
f.attrs["json"] = json.dumps(save_dict, separators=(",", ":")) | ||
|
||
|
||
def load_dp_model(filename: str) -> dict: | ||
"""Load a DP model from a file in the native format. | ||
Parameters | ||
---------- | ||
filename : str | ||
The filename to load from. | ||
Returns | ||
------- | ||
dict | ||
The loaded model dict, including meta information. | ||
""" | ||
with h5py.File(filename, "r") as f: | ||
model_dict = json.loads(f.attrs["json"]) | ||
model_dict = traverse_model_dict(model_dict, lambda x: f[x][()].copy()) | ||
return model_dict | ||
|
||
|
||
class NativeLayer: | ||
"""Native representation of a layer. | ||
Parameters | ||
---------- | ||
w : np.ndarray, optional | ||
The weights of the layer. | ||
b : np.ndarray, optional | ||
The biases of the layer. | ||
idt : np.ndarray, optional | ||
The identity matrix of the layer. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
w: Optional[np.ndarray] = None, | ||
b: Optional[np.ndarray] = None, | ||
idt: Optional[np.ndarray] = None, | ||
) -> None: | ||
self.w = w | ||
self.b = b | ||
self.idt = idt | ||
|
||
def serialize(self) -> dict: | ||
"""Serialize the layer to a dict. | ||
Returns | ||
------- | ||
dict | ||
The serialized layer. | ||
""" | ||
data = { | ||
"w": self.w, | ||
"b": self.b, | ||
} | ||
if self.idt is not None: | ||
data["idt"] = self.idt | ||
return data | ||
|
||
@classmethod | ||
def deserialize(cls, data: dict) -> "NativeLayer": | ||
"""Deserialize the layer from a dict. | ||
Parameters | ||
---------- | ||
data : dict | ||
The dict to deserialize from. | ||
""" | ||
return cls(data["w"], data["b"], data.get("idt", None)) | ||
|
||
def __setitem__(self, key, value): | ||
if key in ("w", "matrix"): | ||
self.w = value | ||
elif key in ("b", "bias"): | ||
self.b = value | ||
elif key == "idt": | ||
self.idt = value | ||
else: | ||
raise KeyError(key) | ||
|
||
def __getitem__(self, key): | ||
if key in ("w", "matrix"): | ||
return self.w | ||
elif key in ("b", "bias"): | ||
return self.b | ||
elif key == "idt": | ||
return self.idt | ||
else: | ||
raise KeyError(key) | ||
|
||
|
||
class NativeNet: | ||
"""Native representation of a neural network. | ||
Parameters | ||
---------- | ||
layers : list[NativeLayer], optional | ||
The layers of the network. | ||
""" | ||
|
||
def __init__(self, layers: Optional[List[NativeLayer]] = None) -> None: | ||
if layers is None: | ||
layers = [] | ||
self.layers = layers | ||
|
||
def serialize(self) -> dict: | ||
"""Serialize the network to a dict. | ||
Returns | ||
------- | ||
dict | ||
The serialized network. | ||
""" | ||
return {"layers": [layer.serialize() for layer in self.layers]} | ||
|
||
@classmethod | ||
def deserialize(cls, data: dict) -> "NativeNet": | ||
"""Deserialize the network from a dict. | ||
Parameters | ||
---------- | ||
data : dict | ||
The dict to deserialize from. | ||
""" | ||
return cls([NativeLayer.deserialize(layer) for layer in data["layers"]]) | ||
|
||
def __getitem__(self, key): | ||
assert isinstance(key, int) | ||
if len(self.layers) <= key: | ||
self.layers.extend([NativeLayer()] * (key - len(self.layers) + 1)) | ||
return self.layers[key] | ||
|
||
def __setitem__(self, key, value): | ||
assert isinstance(key, int) | ||
if len(self.layers) <= key: | ||
self.layers.extend([NativeLayer()] * (key - len(self.layers) + 1)) | ||
self.layers[key] = value |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import os | ||
import unittest | ||
from copy import ( | ||
deepcopy, | ||
) | ||
|
||
import numpy as np | ||
|
||
from deepmd_utils.model_format import ( | ||
NativeNet, | ||
load_dp_model, | ||
save_dp_model, | ||
) | ||
|
||
|
||
class TestNativeNet(unittest.TestCase): | ||
def setUp(self) -> None: | ||
self.w = np.full((3, 2), 3.0) | ||
self.b = np.full((3,), 4.0) | ||
|
||
def test_serialize(self): | ||
network = NativeNet() | ||
network[1]["w"] = self.w | ||
network[1]["b"] = self.b | ||
network[0]["w"] = self.w | ||
network[0]["b"] = self.b | ||
jdata = network.serialize() | ||
np.testing.assert_array_equal(jdata["layers"][0]["w"], self.w) | ||
np.testing.assert_array_equal(jdata["layers"][0]["b"], self.b) | ||
np.testing.assert_array_equal(jdata["layers"][1]["w"], self.w) | ||
np.testing.assert_array_equal(jdata["layers"][1]["b"], self.b) | ||
|
||
def test_deserialize(self): | ||
network = NativeNet.deserialize( | ||
{ | ||
"layers": [ | ||
{"w": self.w, "b": self.b}, | ||
{"w": self.w, "b": self.b}, | ||
] | ||
} | ||
) | ||
np.testing.assert_array_equal(network[0]["w"], self.w) | ||
np.testing.assert_array_equal(network[0]["b"], self.b) | ||
np.testing.assert_array_equal(network[1]["w"], self.w) | ||
np.testing.assert_array_equal(network[1]["b"], self.b) | ||
|
||
|
||
class TestDPModel(unittest.TestCase): | ||
def setUp(self) -> None: | ||
self.w = np.full((3, 2), 3.0) | ||
self.b = np.full((3,), 4.0) | ||
self.model_dict = { | ||
"type": "some_type", | ||
"@variables": { | ||
"layers": [ | ||
{"w": self.w, "b": self.b}, | ||
{"w": self.w, "b": self.b}, | ||
] | ||
}, | ||
} | ||
self.filename = "test_dp_model_format.dp" | ||
|
||
def test_save_load_model(self): | ||
save_dp_model(self.filename, deepcopy(self.model_dict)) | ||
model = load_dp_model(self.filename) | ||
np.testing.assert_equal(model["model"], self.model_dict) | ||
assert "software" in model | ||
assert "version" in model | ||
|
||
def tearDown(self) -> None: | ||
if os.path.exists(self.filename): | ||
os.remove(self.filename) |