Skip to content

Commit

Permalink
add utils for DP native model format
Browse files Browse the repository at this point in the history
Split from deepmodeling#2987.

Signed-off-by: Jinzhe Zeng <[email protected]>
  • Loading branch information
njzjz committed Dec 15, 2023
1 parent 18902be commit 4d2434b
Show file tree
Hide file tree
Showing 2 changed files with 313 additions and 0 deletions.
240 changes: 240 additions & 0 deletions deepmd_utils/model_format.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,240 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Native DP model format for multiple backends.
See issue #2982 for more information.
"""
import json
from typing import (
List,
Optional,
)

import h5py
import numpy as np

try:
from deepmd_utils._version import version as __version__
except ImportError:
__version__ = "unknown"


def traverse_model_dict(model_obj, callback: callable, is_variable: bool = False):
"""Traverse a model dict and call callback on each variable.
Parameters
----------
model_obj : object
The model object to traverse.
callback : callable
The callback function to call on each variable.
is_variable : bool, optional
Whether the current node is a variable.
Returns
-------
object
The model object after traversing.
"""
if isinstance(model_obj, dict):
for kk, vv in model_obj.items():
model_obj[kk] = traverse_model_dict(
vv, callback, is_variable=is_variable or kk == "@variables"
)
elif isinstance(model_obj, list):
for ii, vv in enumerate(model_obj):
model_obj[ii] = traverse_model_dict(vv, callback, is_variable=is_variable)
elif is_variable:
model_obj = callback(model_obj)
return model_obj


class Counter:
"""A callable counter.
Examples
--------
>>> counter = Counter()
>>> counter()
0
>>> counter()
1
"""

def __init__(self):
self.count = -1

def __call__(self):
self.count += 1
return self.count


def save_dp_model(filename: str, model_dict: dict, extra_info: Optional[dict] = None):
"""Save a DP model to a file in the native format.
Parameters
----------
filename : str
The filename to save to.
model_dict : dict
The model dict to save.
extra_info : dict, optional
Extra meta information to save.
"""
model_dict = model_dict.copy()
variable_counter = Counter()
if extra_info is not None:
extra_info = extra_info.copy()
else:
extra_info = {}
with h5py.File(filename, "w") as f:
model_dict = traverse_model_dict(
model_dict,
lambda x: f.create_dataset(
f"variable_{variable_counter():04d}", data=x
).name,
)
save_dict = {
"model": model_dict,
"software": "deepmd-kit",
"version": __version__,
**extra_info,
}
f.attrs["json"] = json.dumps(save_dict, separators=(",", ":"))


def load_dp_model(filename: str) -> dict:
"""Load a DP model from a file in the native format.
Parameters
----------
filename : str
The filename to load from.
Returns
-------
dict
The loaded model dict, including meta information.
"""
with h5py.File(filename, "r") as f:
model_dict = json.loads(f.attrs["json"])
model_dict = traverse_model_dict(model_dict, lambda x: f[x][()].copy())
return model_dict


class NativeLayer:
"""Native representation of a layer.
Parameters
----------
w : np.ndarray, optional
The weights of the layer.
b : np.ndarray, optional
The biases of the layer.
idt : np.ndarray, optional
The identity matrix of the layer.
"""

def __init__(
self,
w: Optional[np.ndarray] = None,
b: Optional[np.ndarray] = None,
idt: Optional[np.ndarray] = None,
) -> None:
self.w = w
self.b = b
self.idt = idt

def serialize(self) -> dict:
"""Serialize the layer to a dict.
Returns
-------
dict
The serialized layer.
"""
data = {
"w": self.w,
"b": self.b,
}
if self.idt is not None:
data["idt"] = self.idt
return data

@classmethod
def deserialize(cls, data: dict) -> "NativeLayer":
"""Deserialize the layer from a dict.
Parameters
----------
data : dict
The dict to deserialize from.
"""
return cls(data["w"], data["b"], data.get("idt", None))

def __setitem__(self, key, value):
if key in ("w", "matrix"):
self.w = value
elif key in ("b", "bias"):
self.b = value
elif key == "idt":
self.idt = value
else:
raise KeyError(key)

def __getitem__(self, key):
if key in ("w", "matrix"):
return self.w
elif key in ("b", "bias"):
return self.b
elif key == "idt":
return self.idt
else:
raise KeyError(key)


class NativeNet:
"""Native representation of a neural network.
Parameters
----------
layers : list[NativeLayer], optional
The layers of the network.
"""

def __init__(self, layers: Optional[List[NativeLayer]] = None) -> None:
if layers is None:
layers = []
self.layers = layers

def serialize(self) -> dict:
"""Serialize the network to a dict.
Returns
-------
dict
The serialized network.
"""
return {"layers": [layer.serialize() for layer in self.layers]}

@classmethod
def deserialize(cls, data: dict) -> "NativeNet":
"""Deserialize the network from a dict.
Parameters
----------
data : dict
The dict to deserialize from.
"""
return cls([NativeLayer.deserialize(layer) for layer in data["layers"]])

def __getitem__(self, key):
assert isinstance(key, int)
if len(self.layers) <= key:
self.layers.extend([NativeLayer()] * (key - len(self.layers) + 1))
return self.layers[key]

def __setitem__(self, key, value):
assert isinstance(key, int)
if len(self.layers) <= key:
self.layers.extend([NativeLayer()] * (key - len(self.layers) + 1))
self.layers[key] = value
73 changes: 73 additions & 0 deletions source/tests/test_model_format_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import os
import unittest
from copy import (
deepcopy,
)

import numpy as np

from deepmd_utils.model_format import (
NativeNet,
load_dp_model,
save_dp_model,
)


class TestNativeNet(unittest.TestCase):
def setUp(self) -> None:
self.w = np.full((3, 2), 3.0)
self.b = np.full((3,), 4.0)

def test_serialize(self):
network = NativeNet()
network[1]["w"] = self.w
network[1]["b"] = self.b
network[0]["w"] = self.w
network[0]["b"] = self.b
jdata = network.serialize()
np.testing.assert_array_equal(jdata["layers"][0]["w"], self.w)
np.testing.assert_array_equal(jdata["layers"][0]["b"], self.b)
np.testing.assert_array_equal(jdata["layers"][1]["w"], self.w)
np.testing.assert_array_equal(jdata["layers"][1]["b"], self.b)

def test_deserialize(self):
network = NativeNet.deserialize(
{
"layers": [
{"w": self.w, "b": self.b},
{"w": self.w, "b": self.b},
]
}
)
np.testing.assert_array_equal(network[0]["w"], self.w)
np.testing.assert_array_equal(network[0]["b"], self.b)
np.testing.assert_array_equal(network[1]["w"], self.w)
np.testing.assert_array_equal(network[1]["b"], self.b)


class TestDPModel(unittest.TestCase):
def setUp(self) -> None:
self.w = np.full((3, 2), 3.0)
self.b = np.full((3,), 4.0)
self.model_dict = {
"type": "some_type",
"@variables": {
"layers": [
{"w": self.w, "b": self.b},
{"w": self.w, "b": self.b},
]
},
}
self.filename = "test_dp_model_format.dp"

def test_save_load_model(self):
save_dp_model(self.filename, deepcopy(self.model_dict))
model = load_dp_model(self.filename)
np.testing.assert_equal(model["model"], self.model_dict)
assert "software" in model
assert "version" in model

def tearDown(self) -> None:
if os.path.exists(self.filename):
os.remove(self.filename)

0 comments on commit 4d2434b

Please sign in to comment.