This guide describes how to manually add support for a new target and/or board to pyOCD. In most cases you do not need to add a builtin target anymore, and can use pyOCD's support for CMSIS Device Family Packs.
For background information, review the architecture overview document first. The CMSIS Pack documentation may also be helpful.
The instructions below assume you have a CMSIS Device Family Pack (DFP) available for your target. See the list of all publicly available Packs to find and download the DFP for your target.
A DFP is simply a zip file with a .pack extension. To extract the contents you can change the extension to .zip and extract with your favourite archive utility.
For this context, the most important thing inside the DFP are .FLM files that contain the flash programming algorithms used in step 5 below. The .pdsc file can also be useful. It is an XML file that contains details such as the memory map for the target devices described by the DFP.
-
Create a new
CoreSightTarget
subclass in a file underpyocd/target/builtin/
. You can copy one of the existing target files likepyocd/target/builtin/target_ncs36510.py
and rename the class.The target source file name must follow the pattern "target_<device>.py", where "<device>" is the device's
Dname
orDvariant
part number value from the appropriate CMSIS Device Family Pack (DFP). For instance,target_LPC54608J512ET180.py
. You may substitute an "x" for certain fields in the part number, such as a package or pin count code, temperature code, or memory size (if multiple memory sizes are supported via classes within the one source file). For instance,target_STM32F412xx.py
. If the device doesn't have a DFP, then use a similar, complete part number. -
Set the
VENDOR
class attribute on theCoreSightTarget
subclass. The vendor name must be one of the standard values defined by theDeviceVendorEnum
type for CMSIS Packs. (If the vendor is not listed, please contact Arm.) -
You may optionally add
PART_NUMBER
and/orPART_FAMILIES
class attributes to your target class. T -
Create the target's memory map from information in the device's reference manual. The memory map should be a
MEMORY_MAP
class attribute of the target class. Modifying an existing memory map is easiest, and there are many examples in the other targets. -
To create the flash algo, the recommended method is to use the
scripts/generate_flash_algo_.py
script included in the pyocd repo. This script will generate an output file in the form required for pyocd from an .FLM file that is included as part of a CMSIS DFP.-
Locate the correct .FLM file from the DFP for your target.
-
Run
scripts/generate_flash_algo_.py \<path to FLM>
. It will write the output files to the working directory from where you called the script. -
The
pyocd_blob.py
output file contains the Python code for the flash algo. Copy theFLASH_ALGO_*
dictionary (the name will have a suffix based on the FLM name) into the target source file. -
Review the addresses in the
flash_algo
dictionary to make sure they are valid. The memory layout should look like:|----------------|-------------|------------|-----|-----------------|-----------------| | load_address | static_base | << (stack) | ... | page_buffers[0] | page_buffers[1] | |----------------|-------------|------------|-----|-----------------|-----------------| ^ ^ ^ RAM start begin_stack (grows down) also begin_data
Each of the addresses in the
page_buffers
list points to a buffer of the maximum page size of any flash region. If there is not enough RAM to hold two page buffers, then remove one of the addresses from the list. This will disable double buffered flash programming. -
To enable efficient scanning for modified pages via CRC checking, you can set the
analyzer_supported
key to True and theanalyzer_address
to the start address for an unused range of (1224 + 4 * number-of-flash-pages) bytes of RAM. -
Pass the
FLASH_ALGO_*
dict for thealgo
parameter to theFlashRegion
constructor in your memory map. This binds the flash algo to that flash memory region.
-
-
If the target has multiple flash algos for different flash types, repeat step 5 as necessary.
-
Edit
pyocd/target/builtin/__init__.py
to import your target source file and add your new target to theBUILTIN_TARGETS
dict. -
You or your employer own the copyright on the new code, so make sure you set the copyright on the new target file. You should also add a copyright to any existing files you modified.
Now your new target is available for use via the --target
command line option! You can test its availability
by running pyocd list --targets --name <target-name>
.
This section only applies if your board has an on-board debug probe that either:
- Uses the Arm DAPLink firmware. DAPLink presents the board ID as the first 4 characters of the USB serial number.
- Uses the STLinkV2-1 or STLinkV3 firmware and the board is Mbed-enabled. STLink presents the board ID as the first 4 characters of the code in the HTML file on the USB mass storage volume.
If neither applies, then pyOCD will be unable to automatically detect the board type. However, you
can still use the target by passing the --target
argument to pyOCD.
Follow these steps:
-
Identify the 4-character board ID.
-
Insert a row into the
BOARD_ID_TO_INFO
table inpyocd/board/board_ids.py
with the board ID, board name, target type, and test binary file name.The new row should look similar to this:
"0205": BoardInfo( "FRDM-KL28Z", "kl28z", "l1_kl28z.bin", ),
Be sure to insert the row in sorted order by board ID, and please align columns.
-
Place a test firmware binary file listed in the board info into the
test/data/binaries/
directory. The test firmware can be nothing more than a tiny LED blinky demo. It must not require any user input, and should provide immediate visual feedback that the code is successfully running, assuming there are LEDs on the board.