Skip to content

The code for paper “Automatic Velocity Picking Using an Unsupervised Ensemble Learning”

License

Notifications You must be signed in to change notification settings

newbee-ML/Velocity-Picking-UEL

Repository files navigation

Automatic Velocity Spectrum Picking using an Unsupervised Ensemble Learning


The code for the manuscript named 'Automatic Stack Velocity Picking Using an Unsupervised Ensemble Learning Method' (UEL) submitted to Computers & Geosciences.

Preparing

Python packages

  • create conda env and install python packages
conda create -n SynData python=3.8
conda list -e > requirements.txt

Prepare dataset

After the above preparation, your dataset folder has to follow the structure:

-- data-root
  |-- field-set-A
    |-- segy
    |-- h5file
    |-- v_t_labels.npy
  |-- synthetic-S1
    |-- gth
    |-- pwr
    |-- ModelInfo.npy
  |-- ... 

Utilize UEL to automatically pick

Using the following code to utilize UEL to pick velocity spectrum of synthetic dataset named S1 automatically.

tips: we should first check your path setting in data/config.py

python UtilizeUEL.py --SetName S1 --EpName syn-S1 --TestNum 10 --VisualNum 5

You will obtain the following log in your shell terminal like these:

All xxx samples,  x are seeds
2023-02-16 15:32:02,965 - Line 2240     CDP 1440        VMAE 10.310     VMER 0.269      PR 100.000      MD 9.507        Center Num 23
2023-02-16 15:32:08,656 - Line 2240     CDP 1520        VMAE 19.359     VMER 0.679      PR 100.000      MD 18.163       Center Num 20
2023-02-16 15:32:13,597 - Line 2240     CDP 1560        VMAE 20.055     VMER 0.663      PR 100.000      MD 19.973       Center Num 13
2023-02-16 15:32:18,409 - Line 2240     CDP 1600        VMAE 26.514     VMER 0.809      PR 100.000      MD 21.533       Center Num 13

Also, you can check your visual results in results/UEL/Ep-name-xxx/figs/xxx.png like this:

  • automatically picking results automatically picking results

  • normal moveout correction by auot-picked velocity generate cmp gather

About

The code for paper “Automatic Velocity Picking Using an Unsupervised Ensemble Learning”

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages