Skip to content

Commit

Permalink
Re #122 - calculation for individual dspace resolution for each peak …
Browse files Browse the repository at this point in the history
…and pixel
  • Loading branch information
marshallmcdonnell committed Jan 31, 2019
1 parent e99a2ea commit 3960dd7
Showing 1 changed file with 82 additions and 0 deletions.
82 changes: 82 additions & 0 deletions Calibration/calculation_for_dspacing_resolution_by_pixel_peak.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
import numpy as np
import matplotlib.pyplot as plt
from mantid.simpleapi import *

chi2_threshold = 1e12

# Input dvalues (here are the diamond ones)
dvalues = (0.3117,0.3257,0.3499,0.4205,0.4645,0.4768,0.4996,0.5150,0.5441,0.5642,0.5947,
0.6307,.6866,.7283,.8185,.8920,1.0758,1.2615,2.0599)

def get_fit_params_from_instrument_preselected_file(instrument):
# Load files
filename="%s_pdcalibration_diagnostics.nxs" % instrument

cal_wksp = LoadNexusProcessed(Filename=filename)

# Get the fitting parameters workspace
if instrument == "NOM":
wksp_name = "NOM_122825_diag_fitparam"
if instrument == "PG3":
wksp_name = "PG3_39169_diag_fitparam"
return mtd[wksp_name]

def get_fit_params_by_fitting(wksp):
pass

def get_column_data(wksp, val_col, chi2_col, threshold):
values = list()
for (val, chi2) in zip(wksp.column(val_col), wksp.column(chi2_col)):
if chi2 < chi2_threshold:
values.append(val)
return values

def deltaD(tof_center, tof_width, dspace_center):
tof_fwhm = 2.* np.sqrt(2.*np.log(2.)) * tof_width
dspace_fwhm = (tof_fwhm / tof_center) * dspace_center
return dspace_fwhm

if __name__=="__main__":
wksp = get_fit_params_from_instrument_preselected_file("NOM")

# Extract the column IDs of interest
wksp_col = wksp.getColumnNames().index('wsindex')
center_col = wksp.getColumnNames().index('centre')
width_col = wksp.getColumnNames().index('width')
peak_col = wksp.getColumnNames().index('peakindex')
chi2_col = wksp.getColumnNames().index('chi2')

# Extract data
pixel_idx_vals = get_column_data(wksp, wksp_col, chi2_col, chi2_threshold)
center_vals = get_column_data(wksp, center_col, chi2_col, chi2_threshold)
width_vals = get_column_data(wksp, width_col, chi2_col, chi2_threshold)
dspace_idx_vals = get_column_data(wksp, peak_col, chi2_col, chi2_threshold)

# Make array where rows are pixels and cols are delta-d values (FWHM in dspace)
pixels = np.unique(np.array(pixel_idx_vals))
idx2pixel = { i:pid for i, pid in enumerate(pixels) }
pixel2idx = { pid:i for i, pid in enumerate(pixels)}

'''
TODO: vectorize the for-loop to operate on arrays for : tof_center, tof_widths, dvalues
step 1 - get vector for dvalues, maybe use np.vstack, to create a len(pixels) * len(dvalues) vector for step 3
step 2 - vector operate on tof_widths to get tof_fwhms
step 3 - vector operate on tof_fwhms / tof_centers * dvalues to get dspace_fwhms
TODO: then, use histogramming (probably with a set number of bins) to reduce the number of points plotted.
could do an array of len(n_histograms)*len(dvalues) that can be plotted quickly and easily and easier for linear regression
would also be necessary before interactivity could be introduced for say: displaying number of pixels per dspacing,
changing sigma for inclusion around linear regression line, etc.
'''
pixel_deltaD = np.zeros((len(pixels), len(dvalues)))
fig, ax = plt.subplots(1)
for pidx, tof_center, tof_width, dspace_idx in zip(pixel_idx_vals, center_vals, width_vals, dspace_idx_vals):
dspace_width = deltaD(tof_center, tof_width, dvalues[dspace_idx])
pixel_deltaD[pixel2idx[pidx],dspace_idx] = dspace_width

for idx, row in enumerate(pixel_deltaD):
ax.plot(dvalues, row, 'o', label="Pixel: %d" % idx2pixel[idx])

ax.legend()
plt.show()


0 comments on commit 3960dd7

Please sign in to comment.