Skip to content

Commit

Permalink
Add convolutional autoencoder #49 #13
Browse files Browse the repository at this point in the history
  • Loading branch information
bdubayah committed Aug 11, 2021
1 parent c21048a commit 0479d06
Show file tree
Hide file tree
Showing 4 changed files with 307 additions and 1 deletion.
275 changes: 275 additions & 0 deletions dora_exp_pipeline/conv_pae_outlier_detection.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
from dora_exp_pipeline.outlier_detection import OutlierDetection
import os
import math
import numpy as np
from PIL import Image
from itertools import accumulate
from copy import deepcopy
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, losses
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow_probability import distributions, bijectors, layers as tfpl


class ConvPAEOutlierDetection(OutlierDetection):
def __init__(self):
super(ConvPAEOutlierDetection, self).__init__('conv_pae')

def _rank_internal(self, data_to_fit, data_to_score, data_to_score_ids,
top_n, seed, latent_dim):
if data_to_fit is None:
data_to_fit = deepcopy(data_to_score)

if latent_dim < 1:
raise RuntimeError('The dimensionality of the latent space must be '
'>= 1')

# Check if directory of images was passed in
if not is_list_of_images(data_to_fit):
raise RuntimeError('The convolutional PAE must be used with the'
'Imagedir data loader')

# Check that the number of hidden layers <= number of features
image_shape = get_image_dimensions(data_to_fit)
num_features = np.prod(image_shape)
if latent_dim > num_features:
raise RuntimeError(f'The dimensionality of the latent space'
f'(latent_dim = {latent_dim}) '
f'must be <= number of features '
f'({num_features})')

# Rank targets
scores = train_and_run_conv_PAE(data_to_fit, data_to_score, latent_dim,
image_shape, seed)
selection_indices = np.argsort(scores)[::-1]

results = dict()
results.setdefault('scores', list())
results.setdefault('sel_ind', list())
results.setdefault('dts_ids', list())
for ind in selection_indices[:top_n]:
results['scores'].append(scores[ind])
results['sel_ind'].append(ind)
results['dts_ids'].append(data_to_score_ids[ind])

return results


def train_and_run_conv_PAE(train, test, latent_dim, image_shape, seed):
# Make tensorflow datasets
channels = image_shape[2]
train_ds, val_ds, test_ds = get_train_val_test(train, test, seed, channels)

# Train autoencoder
autoencoder = ConvAutoencoder(latent_dim, image_shape)
autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError())
callback = EarlyStopping(monitor='val_loss', patience=5)
autoencoder.fit(x=train_ds, validation_data=val_ds, verbose=0, epochs=1000,
callbacks=[callback])

# Encode datasets
enc_train = autoencoder.encoder.predict(train_ds)
enc_val = autoencoder.encoder.predict(val_ds)
encoded_train = np.append(enc_train, enc_val, axis=0)

# Train flow
flow = NormalizingFlow(latent_dim)
flow.compile(optimizer='adam', loss=lambda y, rv_y: -rv_y.log_prob(y))
callback = EarlyStopping(monitor='val_loss', patience=5)
flow.fit(np.zeros((len(encoded_train), 0)), encoded_train, verbose=0,
epochs=1000, callbacks=[callback], validation_split=0.25)

# Calculate scores
trained_dist = flow.dist(np.zeros(0,))
encoded_test = autoencoder.encoder.predict(test_ds)
log_probs = trained_dist.log_prob(encoded_test)
scores = np.negative(log_probs)

return scores


def is_list_of_images(data):
fit_elem = data[0][0]
supported_exts = tuple(['.jpg', '.png', '.bmp', '.gif'])
return isinstance(fit_elem, str) and fit_elem.endswith(supported_exts)


def get_image_dimensions(data):
fit_elem = data[0][0]
im_pil = Image.open(fit_elem)
im_data = np.array(im_pil)
im_pil.close()
image_shape = im_data.shape
if len(image_shape) < 3: # Add channel dimension to grayscale images
image_shape += (1,)
return image_shape


def get_train_val_test(train_images, test_images, seed, channels):
# Make training and validation sets
fit_ds = make_tensorlow_dataset(train_images, channels)
test_ds = make_tensorlow_dataset(test_images, channels)
fit_ds = fit_ds.shuffle(len(train_images), seed=seed,
reshuffle_each_iteration=True)
val_size = int(len(train_images) * 0.25)
train_ds = fit_ds.skip(val_size)
val_ds = fit_ds.take(val_size)

train_ds = configure_for_performance(train_ds)
val_ds = configure_for_performance(val_ds)
test_ds = configure_for_performance(test_ds)

return train_ds, val_ds, test_ds


def make_tensorlow_dataset(image_list, channels):
elem = image_list[0][0]
images_dir = os.path.split(elem)[0]
ext = os.path.splitext(elem)[1]
ds = tf.data.Dataset.list_files(images_dir + '/*' + ext, shuffle=False)
ds = ds.map(lambda x: process_path(x, channels),
num_parallel_calls=tf.data.AUTOTUNE)
return ds


def process_path(file_path, channels):
img = tf.io.read_file(file_path)
img = tf.io.decode_image(img, channels=channels)
return img, img


def configure_for_performance(ds):
ds = ds.cache()
ds = ds.batch(32)
ds = ds.prefetch(buffer_size=tf.data.AUTOTUNE)
return ds


class ConvAutoencoder(Model):
def __init__(self, latent_dim, input_shape):
super(ConvAutoencoder, self).__init__()

self._height = input_shape[0]
self._width = input_shape[1]
self._channels = input_shape[2]

self._encoder_layers = [
layers.InputLayer(input_shape=input_shape),
layers.experimental.preprocessing.Rescaling(1./255)
]
self._decoder_layers = [
layers.InputLayer(input_shape=(latent_dim,))
]

# Calculate # of convolution layers and final dimensions before
# dense layer
num_conv_layers = math.ceil(math.log2(input_shape[0])) - 2

# Target width/height and channels after convolution layers
layer_sizes = list(accumulate(
range(num_conv_layers),
lambda curr_dim, _: math.ceil(curr_dim/2),
initial=self._width
))
target_width = layer_sizes[-1]
target_shape = (target_width, target_width,
32*2**(num_conv_layers - 1))

# Convolution layers for encoder
for i in range(num_conv_layers):
self._encoder_layers.append(
layers.Conv2D(
filters=32*2**i,
kernel_size=3,
strides=2,
padding='same',
activation='relu'))

# Flatten and map to latent dim
self._encoder_layers.extend([
layers.Flatten(),
layers.Dense(latent_dim)
])

# Add dense layer to map back from latent dim, then reshape to 2D
self._decoder_layers.extend([
layers.Dense(units=np.prod(target_shape), activation='relu'),
layers.Reshape(target_shape=target_shape)
])

# Convolution layers for decoder
for i in range(num_conv_layers):
self._decoder_layers.append(
layers.Conv2DTranspose(
filters=32*2**(num_conv_layers - i - 1),
kernel_size=3,
strides=2,
output_padding=(
0 if layer_sizes[-1-i-1] % 2 != 0 else None
), # Don't pad output if next layer is odd
padding='same',
activation='relu'))

# Final decoder layer to map back to input channels
self._decoder_layers.append(
layers.Conv2DTranspose(
filters=self._channels,
kernel_size=3,
strides=1,
padding='same'))

self.encoder = keras.Sequential(self._encoder_layers)
self.decoder = keras.Sequential(self._decoder_layers)

def call(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded


class NormalizingFlow(Model):
def __init__(self, latent_dim):
super(NormalizingFlow, self).__init__()

self.dist = keras.Sequential([
layers.InputLayer(input_shape=(0,), dtype=tf.float32),
tfpl.DistributionLambda(
lambda t: distributions.MultivariateNormalDiag(
loc=tf.zeros(tf.concat([tf.shape(t)[:-1],
[latent_dim]],
axis=0)))),
tfpl.AutoregressiveTransform(bijectors.AutoregressiveNetwork(
params=2, hidden_units=[10, 10], activation='relu')),
])

def call(self, x):
return self.dist(x)


# Copyright (c) 2021 California Institute of Technology ("Caltech").
# U.S. Government sponsorship acknowledged.
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# - Neither the name of Caltech nor its operating division, the Jet Propulsion
# Laboratory, nor the names of its contributors may be used to endorse or
# promote products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2 changes: 1 addition & 1 deletion dora_exp_pipeline/dora_data_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def _load(self, dir_path: str) -> dict:

class ImageDirectoryLoader(DataLoader):
def __init__(self):
super(ImageDirectoryLoader, self).__init__('Imagedir')
super(ImageDirectoryLoader, self).__init__('image_dir')

def _load(self, dir_path: str) -> dict:
if not os.path.exists(dir_path):
Expand Down
5 changes: 5 additions & 0 deletions dora_exp_pipeline/dora_exp.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from dora_exp_pipeline.negative_sampling_outlier_detection import \
NegativeSamplingOutlierDetection
from dora_exp_pipeline.pae_outlier_detection import PAEOutlierDetection
from dora_exp_pipeline.conv_pae_outlier_detection import ConvPAEOutlierDetection
from dora_exp_pipeline.util import LogUtil
from dora_exp_pipeline.dora_feature import extract_feature
from dora_exp_pipeline.outlier_detection import get_alg_by_name
Expand Down Expand Up @@ -60,6 +61,10 @@ def register_od_algs():
pae_outlier_detection = PAEOutlierDetection()
register_od_alg(pae_outlier_detection)

# Register Convolutional PAE outlier detection algorithm in the pool
conv_pae_outlier_detection = ConvPAEOutlierDetection()
register_od_alg(conv_pae_outlier_detection)


def start(config_file: str, out_dir: str, log_file=None, seed=1234):
if not os.path.exists(config_file):
Expand Down
26 changes: 26 additions & 0 deletions dora_exp_pipeline/example_config/dora_conv_autoencoder.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Data loading module parameters
data_type: 'image_dir'
data_to_fit: '/PATH/TO/DIR/'
data_to_score: 'PATH/TO/DIR/'
zscore_normalization: False
out_dir: 'PATH/TO/OUTPUT/DIR'

# Feature extraction module
features: {
raw_values: {
# no args
}
}

# Outlier detection module
top_n: 10
outlier_detection: {
conv_pae: {
latent_dim: 32
}
}

# Results organization module
results: {
save_scores: {}
}

0 comments on commit 0479d06

Please sign in to comment.