Next art Any_RAG
Chain of Thought implementation using different API vendors
inspiration: https://github.com/Jaimboh/Llamaberry-Chain-of-Thought-Reasoning-in-AI
cot_models:
first_turn:
name: "llama-3.1-70b-versatile"
api: "groq"
user_prompt: |
{user_prompt}.
followup:
name: "llama-3.1-70b-versatile"
api: "groq"
synthesis:
name: "llama-3.1-70b-versatile"
api: "groq"
cot_prompt:
first_turn: |
...
python bot.py config\groq\groq_test.yaml
(generates image prompt)
cot_models:
first_turn:
name: "mistralai/Mistral-Nemo-Instruct-2407"
api: "hugging_face"
user_prompt: |
{user_prompt}
return a detailed description of updated image prompt in <fused_image> tags.
followup:
name: "mistralai/Mistral-Nemo-Instruct-2407"
api: "hugging_face"
synthesis:
name: "mistralai/Mistral-Nemo-Instruct-2407"
api: "hugging_face"
cot_prompt:
first_turn: |
...
python bot.py config\hugging_face\test.yaml
Groq + HF (Groq as synthesizer)
cot_models:
first_turn:
name: "mistralai/Mistral-Nemo-Instruct-2407"
api: "hugging_face"
user_prompt: |
{user_prompt}
followup:
name: "mistralai/Mistral-Nemo-Instruct-2407"
api: "hugging_face"
synthesis:
name: "llama-3.1-70b-versatile"
api: "groq"
cot_prompt:
first_turn: |
...
python bot.py config\mixed\mixed_test.yaml
Previous art: Any_MOA