Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added function to compute likelihood between sample and target distri… #90

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/pytorch_llid/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
__version__ = '0.2.1'
3 changes: 3 additions & 0 deletions src/pytorch_llid/__main__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import pytorch_llid.llid_score

pytorch_llid.llid_score.main()
280 changes: 280 additions & 0 deletions src/pytorch_llid/llid_score.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
"""Calculates the LLID between an image and batch of images to evalulate GANs

The LLID metric calculates the loglikelihood of an image under a target distribution, estimated from a batch of images.

See --help to see further details.

Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow

Copyright 2018 Institute of Bioinformatics, JKU Linz

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import pathlib
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser

import numpy as np
import torch
import torchvision.transforms as TF
from PIL import Image
from scipy import linalg
from scipy.stats import multivariate_normal
from torch.nn.functional import adaptive_avg_pool2d

try:
from tqdm import tqdm
except ImportError:
# If tqdm is not available, provide a mock version of it
def tqdm(x):
return x

from pytorch_fid.inception import InceptionV3

parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=50,
help='Batch size to use')
parser.add_argument('--num-workers', type=int,
help=('Number of processes to use for data loading. '
'Defaults to `min(8, num_cpus)`'))
parser.add_argument('--device', type=str, default=None,
help='Device to use. Like cuda, cuda:0 or cpu')
parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help=('Dimensionality of Inception features to use. '
'By default, uses pool3 features'))
parser.add_argument('path', type=str, nargs=2,
help=('Paths to the generated images or '
'to .npz statistic files'))

IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm',
'tif', 'tiff', 'webp'}


class ImagePathDataset(torch.utils.data.Dataset):
def __init__(self, files, transforms=None):
self.files = files
self.transforms = transforms

def __len__(self):
return len(self.files)

def __getitem__(self, i):
path = self.files[i]
img = Image.open(path).convert('RGB')
if self.transforms is not None:
img = self.transforms(img)
return img


def get_activations(files, model, batch_size=50, dims=2048, device='cpu',
num_workers=1):
"""Calculates the activations of the pool_3 layer for all images.

Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers

Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()

if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)

dataset = ImagePathDataset(files, transforms=TF.ToTensor())
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers)

pred_arr = np.empty((len(files), dims))

start_idx = 0

for batch in tqdm(dataloader):
batch = batch.to(device)

with torch.no_grad():
pred = model(batch)[0]

# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))

pred = pred.squeeze(3).squeeze(2).cpu().numpy()

pred_arr[start_idx:start_idx + pred.shape[0]] = pred

start_idx = start_idx + pred.shape[0]

return pred_arr


def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).

Stable version by Dougal J. Sutherland.

Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.

Returns:
-- : The Frechet Distance.
"""

mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)

sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)

assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'

diff = mu1 - mu2

# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real

tr_covmean = np.trace(covmean)

return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)


def calculate_activation_statistics(files, model, batch_size=50, dims=2048,
device='cpu', num_workers=1):
"""Calculation of the statistics used by the FID.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers

Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = get_activations(files, model, batch_size, dims, device, num_workers)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma


def compute_statistics_of_path(path, model, batch_size, dims, device,
num_workers=1):
if path.endswith('.npz'):
with np.load(path) as f:
m, s = f['mu'][:], f['sigma'][:]
else:
path = pathlib.Path(path)
files = sorted([file for ext in IMAGE_EXTENSIONS
for file in path.glob('*.{}'.format(ext))])
m, s = calculate_activation_statistics(files, model, batch_size,
dims, device, num_workers)

return m, s


def calculate_llid_given_paths(paths, batch_size, device, dims, num_workers=1):
"""Calculates the likelihood of sample under the specified target distribution"""
for p in paths:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)

#Load Inception-V3 pretrained model
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).to(device)
#Compute multivariate gaussian of the target distribution
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size,
dims, device, num_workers)
#Calculates the activations of the pool_3 layer for the sample
act = get_activations([paths[1]], model, batch_size, dims, device, num_workers)
#Compute likelihood of sample under the target distribution, given mean and covariance matrix
likelihood = multivariate_normal.logpdf(act, mean=m1, cov=s1)

return likelihood


def main():
args = parser.parse_args()

if args.device is None:
device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu')
else:
device = torch.device(args.device)

if args.num_workers is None:
num_avail_cpus = len(os.sched_getaffinity(0))
num_workers = min(num_avail_cpus, 8)
else:
num_workers = args.num_workers

likelihood = calculate_llid_given_paths(args.path,
args.batch_size,
device,
args.dims,
num_workers)
print('Likelihood: ', likelihood)


if __name__ == '__main__':
main()