Skip to content

Commit

Permalink
finish FT pair table
Browse files Browse the repository at this point in the history
  • Loading branch information
cophus committed Dec 26, 2024
1 parent a850e6e commit 0434849
Showing 1 changed file with 21 additions and 25 deletions.
46 changes: 21 additions & 25 deletions math.md
Original file line number Diff line number Diff line change
Expand Up @@ -193,13 +193,13 @@ A deep understanding of the 2D Fourier transform is essential to both simulate a

## Fourier transform pairs

:::{list-table} 2D Fourier transform pairs important in TEM simulation and analysis.
:::{list-table} 2D Fourier transform pairs important in TEM simulation and analysis. Note that these transform pairs assume that both $\bm{r}$ and $\bm{k}$ are 2D, i.e. $\bm{r}=(x,y)$ and $\bm{k}=(k_x,k_y)$.
:label: tab:fft_pairs
:widths: 20 40 40 20
:header-rows: 2

* - Diffraction space
-
* -
- Diffraction space
- Real space
-

Expand All @@ -214,16 +214,22 @@ A deep understanding of the 2D Fourier transform is essential to both simulate a
- plane wave along optic axis

* - Shifted Dirac function
- $\delta(\bm{\bm{k} - \bm{k}_0})$
- $\delta(\bm{k} - \bm{k}_0)$
- $\exp(-2i \pi \, \bm{r} \cdot \bm{k}_0)$
- plane wave tilted to $\bm{k}_0$

* - Plane wave mult.
* - diffraction spot pair
- $\delta(\bm{k} - \bm{k}_0) + \delta(\bm{k} + \bm{k}_0)$
- $\cos(-2 \pi \, \bm{r} \cdot \bm{k}_0)$
- cosine wave


* - plane wave mult.
- $F(\bm{k}) \exp(-2i \pi \bm{k} \cdot \Delta \bm{r})$
- $f(\bm{r} - \Delta \bm{r})$
- Shifted function

* - Circular aperture
* - circular aperture
- $u(|\bm{k}| - k_{\rm{max}})$
- $\frac{J_1(2 \pi k_{\rm{max}} |\bm{r}| )}{\pi k_{\rm{max}} |r|}$
- Airy disk function
Expand All @@ -247,28 +253,18 @@ A deep understanding of the 2D Fourier transform is essential to both simulate a
\right)$
- Gaussian envelope

* - Lorentzian envelope
* - exponential decay
- $\exp(-\lambda |\bm{k}|)$
- $\frac{\lambda^3}{(\lambda^2 + |\bm{r}|^2)^{3/2}}$
- 3D Lorentzian function

* - Lorentzian function
- $\frac{\gamma^2}{\gamma^2 + |\bm{k}|^2}$
- c
- d
* - a
- b
- c
- d
* - a
- b
- c
- d
* - a
- b
- c
- d
* - a
- b
- c
- d
- $K_0(2 \pi \gamma |\bm{r}|)$
- Modified Bessel func., $2^{\rm{nd}}$ kind
:::

Additional transform pairs can be found in the [Wikipedia table of important Fourier transforms](wiki:Fourier_transform#Tables_of_important_Fourier_transforms).

<!-- <table>
<tr>
Expand Down

0 comments on commit 0434849

Please sign in to comment.