Skip to content

molden/atomlenz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AtomLenz (ATOM-Level ENtity localiZation)

AtomLenz is a chemical structure recognition tool providing atom-level localization, and can therefore segment the image into the different atoms and bonds. Our method operates by using a self-labeling strategy to generate atom-level annotations, enhancing the dataset’s value, and using this enriched representation to fine-tune the model to a new domain.

Reference

If you like this work, consider citing our related paper accepted in CVPR 2024:

@article{oldenhof2024atom,
  title={Atom-Level Optical Chemical Structure Recognition with Limited Supervision},
  author={Oldenhof, Martijn and De Brouwer, Edward and Arany, Adam and Moreau, Yves},
  journal={arXiv preprint arXiv:2404.01743},
  year={2024}
}

Huggingface Space

Please check out our huggingface space if you want to quickly test AtomLenz:

AtomLenz Space

Prerequisites

install ProbKT

Install

install AtomLenz:

pip install -e .

Getting Started

download datasets in datasets folder

download models in models folder

Predict SMILES

python run_scripts/predict_only_smiles.py --experiment_path_atoms models/atoms_model --experiment_path_bonds models/bonds_model --experiment_path_stereo models/stereos_model --experiment_path_charges models/charges_model --data_path ../datasets/hand_drawn_dataset/test/ --score_thresh 0.65

predictions are stored in preds_atomlenz file.

In case true SMILES are available for dataset also performance metrics can be reported:

python run_scripts/predict_smiles.py --experiment_path_atoms models/atoms_model --experiment_path_bonds models/bonds_model --experiment_path_stereo models/stereos_model --experiment_path_charges models/charges_model --data_path <absolute_path>/datasets/hand_drawn_dataset/test/ --score_thresh 0.65

predictions are stored in preds_atomlenz_long file.

Pretraining AtomLenz

The procedure to pretrain AtomLenz is described here: pretrained atomlenz

Train AtomLenz on target domain

The procedure to train AtomLenz on target domain is described here: train atomlenz

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages