Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: use invoke for predict calls and replace do.call for invoke where relevant #68

Merged
merged 6 commits into from
May 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion R/LearnerClustAffinityPropagation.R
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,8 @@ LearnerClustAP = R6Class("LearnerClustAP",
},

.predict = function(task) {
sim_func = self$param_set$values$s
pv = self$param_set$get_values()
sim_func = pv$s
exemplar_data = attributes(self$model)$exemplar_data

d = task$data()
Expand Down
13 changes: 9 additions & 4 deletions R/LearnerClustAgnes.R
Original file line number Diff line number Diff line change
Expand Up @@ -64,17 +64,22 @@ LearnerClustAgnes = R6Class("LearnerClustAgnes",
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
m = invoke(cluster::agnes, x = task$data(), diss = FALSE, .args = pv)
pv = self$param_set$get_values()
m = invoke(cluster::agnes,
x = task$data(),
diss = FALSE,
.args = remove_named(pv, "k")
)
if (self$save_assignments) {
self$assignments = stats::cutree(m, self$param_set$values$k)
self$assignments = stats::cutree(m, pv$k)
}

return(m)
},

.predict = function(task) {
if (self$param_set$values$k > task$nrow) {
pv = self$param_set$get_values(tags = "predict")
if (pv$k > task$nrow) {
stopf("`k` needs to be between 1 and %i", task$nrow)
}

Expand Down
8 changes: 4 additions & 4 deletions R/LearnerClustCMeans.R
Original file line number Diff line number Diff line change
Expand Up @@ -62,9 +62,9 @@ LearnerClustCMeans = R6Class("LearnerClustCMeans",
),
private = list(
.train = function(task) {
check_centers_param(self$param_set$values$centers, task, test_data_frame, "centers")

pv = self$param_set$get_values(tags = "train")
assert_centers_param(pv$centers, task, test_data_frame, "centers")

m = invoke(e1071::cmeans, x = task$data(), .args = pv, .opts = allow_partial_matching)
if (self$save_assignments) {
self$assignments = m$cluster
Expand All @@ -74,8 +74,8 @@ LearnerClustCMeans = R6Class("LearnerClustCMeans",
},

.predict = function(task) {
partition = unclass(cl_predict(self$model, newdata = task$data(), type = "class_ids"))
prob = unclass(cl_predict(self$model, newdata = task$data(), type = "memberships"))
partition = unclass(invoke(cl_predict, self$model, newdata = task$data(), type = "class_ids"))
prob = unclass(invoke(cl_predict, self$model, newdata = task$data(), type = "memberships"))
colnames(prob) = seq_len(ncol(prob))

PredictionClust$new(task = task, partition = partition, prob = prob)
Expand Down
4 changes: 2 additions & 2 deletions R/LearnerClustCobweb.R
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ LearnerClustCobweb = R6Class("LearnerClustCobweb",
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
ctrl = do.call(RWeka::Weka_control, pv)
ctrl = invoke(RWeka::Weka_control, .args = pv)
m = invoke(RWeka::Cobweb, x = task$data(), control = ctrl)
if (self$save_assignments) {
self$assignments = unname(m$class_ids + 1L)
Expand All @@ -53,7 +53,7 @@ LearnerClustCobweb = R6Class("LearnerClustCobweb",
},

.predict = function(task) {
partition = predict(self$model, newdata = task$data(), type = "class") + 1L
partition = invoke(predict, self$model, newdata = task$data(), type = "class") + 1L
PredictionClust$new(task = task, partition = partition)
}
)
Expand Down
2 changes: 1 addition & 1 deletion R/LearnerClustDBSCAN.R
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ LearnerClustDBSCAN = R6Class("LearnerClustDBSCAN",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("partitional", "exclusive", "complete"),
properties = c("density", "exclusive", "complete"),
packages = "dbscan",
man = "mlr3cluster::mlr_learners_clust.dbscan",
label = "Density-Based Clustering"
Expand Down
2 changes: 1 addition & 1 deletion R/LearnerClustDBSCANfpc.R
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ LearnerClustDBSCANfpc = R6Class("LearnerClustDBSCANfpc",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("partitional", "exclusive", "complete"),
properties = c("density", "exclusive", "complete"),
man = "mlr3cluster::mlr_learners_clust.dbscan_fpc",
label = "Density-Based Clustering with fpc"
)
Expand Down
13 changes: 9 additions & 4 deletions R/LearnerClustDiana.R
Original file line number Diff line number Diff line change
Expand Up @@ -45,17 +45,22 @@ LearnerClustDiana = R6Class("LearnerClustDiana",
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
m = invoke(cluster::diana, x = task$data(), diss = FALSE, .args = pv)
pv = self$param_set$get_values()
m = invoke(cluster::diana,
x = task$data(),
diss = FALSE,
.args = remove_named(pv, "k")
)
if (self$save_assignments) {
self$assignments = stats::cutree(m, self$param_set$values$k)
self$assignments = stats::cutree(m, pv$k)
}

return(m)
},

.predict = function(task) {
if (test_true(self$param_set$values$k > task$nrow)) {
pv = self$param_set$get_values(tags = "predict")
if (pv$k > task$nrow) {
stopf("`k` needs to be between 1 and %s", task$nrow)
}

Expand Down
4 changes: 2 additions & 2 deletions R/LearnerClustEM.R
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ LearnerClustEM = R6Class("LearnerClustEM",
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
names(pv) = chartr("_", "-", names(pv))
ctrl = do.call(RWeka::Weka_control, pv)
ctrl = invoke(RWeka::Weka_control, .args = pv)
m = invoke(RWeka::make_Weka_clusterer("weka/clusterers/EM"), x = task$data(), control = ctrl)
if (self$save_assignments) {
self$assignments = unname(m$class_ids + 1L)
Expand All @@ -64,7 +64,7 @@ LearnerClustEM = R6Class("LearnerClustEM",
},

.predict = function(task) {
partition = predict(self$model, newdata = task$data(), type = "class") + 1L
partition = invoke(predict, self$model, newdata = task$data(), type = "class") + 1L
PredictionClust$new(task = task, partition = partition)
}
)
Expand Down
4 changes: 2 additions & 2 deletions R/LearnerClustFarthestFirst.R
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ LearnerClustFarthestFirst = R6Class("LearnerClustFF",
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
names(pv) = chartr("_", "-", names(pv))
ctrl = do.call(RWeka::Weka_control, pv)
ctrl = invoke(RWeka::Weka_control, .args = pv)
m = invoke(RWeka::FarthestFirst, x = task$data(), control = ctrl)
if (self$save_assignments) {
self$assignments = unname(m$class_ids + 1L)
Expand All @@ -54,7 +54,7 @@ LearnerClustFarthestFirst = R6Class("LearnerClustFF",
},

.predict = function(task) {
partition = predict(self$model, newdata = task$data(), type = "class") + 1L
partition = invoke(predict, self$model, newdata = task$data(), type = "class") + 1L
PredictionClust$new(task = task, partition = partition)
}
)
Expand Down
2 changes: 1 addition & 1 deletion R/LearnerClustHDBSCAN.R
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ LearnerClustHDBSCAN = R6Class("LearnerClustHDBSCAN",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("partitional", "exclusive", "complete"),
properties = c("density", "exclusive", "complete"),
packages = "dbscan",
man = "mlr3cluster::mlr_learners_clust.hdbscan",
label = "HDBSCAN Clustering"
Expand Down
17 changes: 10 additions & 7 deletions R/LearnerClustHclust.R
Original file line number Diff line number Diff line change
Expand Up @@ -56,23 +56,26 @@ LearnerClustHclust = R6Class("LearnerClustHclust",
),
private = list(
.train = function(task) {
d = self$param_set$values$distmethod
dist_arg = self$param_set$get_values(tags = c("train", "dist"))
pv = self$param_set$get_values()
dist = invoke(stats::dist,
x = task$data(),
method = ifelse(is.null(d), "euclidean", d), .args = dist_arg
method = pv$d %??% "euclidean",
.args = self$param_set$get_values(tags = c("train", "dist"))
)
m = invoke(stats::hclust,
d = dist,
.args = self$param_set$get_values(tags = c("train", "hclust"))
)
pv = self$param_set$get_values(tags = c("train", "hclust"))
m = invoke(stats::hclust, d = dist, .args = pv)
if (self$save_assignments) {
self$assignments = stats::cutree(m, self$param_set$values$k)
self$assignments = stats::cutree(m, pv$k)
}

return(m)
},

.predict = function(task) {
if (self$param_set$values$k > task$nrow) {
pv = self$param_set$get_values(tags = "predict")
if (pv$k > task$nrow) {
stopf("`k` needs to be between 1 and %i", task$nrow)
}

Expand Down
4 changes: 2 additions & 2 deletions R/LearnerClustKKMeans.R
Original file line number Diff line number Diff line change
Expand Up @@ -65,9 +65,9 @@ LearnerClustKKMeans = R6Class("LearnerClustKKMeans",
),
private = list(
.train = function(task) {
check_centers_param(self$param_set$values$centers, task, test_data_frame, "centers")

pv = self$param_set$get_values(tags = "train")
assert_centers_param(pv$centers, task, test_data_frame, "centers")

m = invoke(kernlab::kkmeans, x = as.matrix(task$data()), .args = pv)
if (self$save_assignments) {
self$assignments = m[seq_along(m)]
Expand Down
8 changes: 4 additions & 4 deletions R/LearnerClustKMeans.R
Original file line number Diff line number Diff line change
Expand Up @@ -52,13 +52,13 @@ LearnerClustKMeans = R6Class("LearnerClustKMeans",

private = list(
.train = function(task) {
if ("nstart" %in% names(self$param_set$values) && !test_int(self$param_set$values$centers)) {
pv = self$param_set$get_values(tags = "train")
if (!is.null(pv$nstart) && !test_int(pv$centers)) {
warningf("`nstart` parameter is only relevant when `centers` is integer.")
}

check_centers_param(self$param_set$values$centers, task, test_data_frame, "centers")
assert_centers_param(pv$centers, task, test_data_frame, "centers")

pv = self$param_set$get_values(tags = "train")
m = invoke(stats::kmeans, x = task$data(), .args = pv)
if (self$save_assignments) {
self$assignments = m$cluster
Expand All @@ -68,7 +68,7 @@ LearnerClustKMeans = R6Class("LearnerClustKMeans",
},

.predict = function(task) {
partition = unclass(cl_predict(self$model, newdata = task$data(), type = "class_ids"))
partition = unclass(invoke(cl_predict, self$model, newdata = task$data(), type = "class_ids"))
PredictionClust$new(task = task, partition = partition)
}
)
Expand Down
2 changes: 1 addition & 1 deletion R/LearnerClustMclust.R
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ LearnerClustMclust = R6Class("LearnerClustMclust",
},

.predict = function(task) {
predictions = predict(self$model, newdata = task$data())
predictions = invoke(predict, self$model, newdata = task$data())
partition = as.integer(predictions$classification)
prob = predictions$z
PredictionClust$new(task = task, partition = partition, prob = prob)
Expand Down
4 changes: 2 additions & 2 deletions R/LearnerClustMeanShift.R
Original file line number Diff line number Diff line change
Expand Up @@ -50,11 +50,11 @@ LearnerClustMeanShift = R6Class("LearnerClustMeanShift",
),
private = list(
.train = function(task) {
if (!is.null(self$param_set$values$subset) && length(self$param_set$values$subset) > task$nrow) {
pv = self$param_set$get_values(tags = "train")
if (!is.null(pv$subset) && length(pv$subset) > task$nrow) {
stopf("`subset` length must be less than or equal to number of observations in task")
}

pv = self$param_set$get_values(tags = "train")
m = invoke(LPCM::ms, X = task$data(), .args = pv)
if (self$save_assignments) {
self$assignments = m$cluster.label
Expand Down
13 changes: 6 additions & 7 deletions R/LearnerClustMiniBatchKMeans.R
Original file line number Diff line number Diff line change
Expand Up @@ -60,16 +60,15 @@ LearnerClustMiniBatchKMeans = R6Class("LearnerClustMiniBatchKMeans",
),
private = list(
.train = function(task) {
check_centers_param(self$param_set$values$CENTROIDS, task, test_matrix, "CENTROIDS")
if (test_matrix(self$param_set$values$CENTROIDS) &&
nrow(self$param_set$values$CENTROIDS) != self$param_set$values$clusters) {
pv = self$param_set$get_values(tags = "train")
assert_centers_param(pv$CENTROIDS, task, test_matrix, "CENTROIDS")
if (test_matrix(pv$CENTROIDS) && nrow(pv$CENTROIDS) != pv$clusters) {
stopf("`CENTROIDS` must have same number of rows as `clusters`")
}

pv = self$param_set$get_values(tags = "train")
m = invoke(ClusterR::MiniBatchKmeans, data = task$data(), .args = pv)
if (self$save_assignments) {
self$assignments = unclass(ClusterR::predict_MBatchKMeans(
self$assignments = unclass(invoke(ClusterR::predict_MBatchKMeans,
data = task$data(),
CENTROIDS = m$centroids,
fuzzy = FALSE
Expand All @@ -82,15 +81,15 @@ LearnerClustMiniBatchKMeans = R6Class("LearnerClustMiniBatchKMeans",

.predict = function(task) {
if (self$predict_type == "partition") {
partition = unclass(ClusterR::predict_MBatchKMeans(
partition = unclass(invoke(ClusterR::predict_MBatchKMeans,
data = task$data(),
CENTROIDS = self$model$centroids,
fuzzy = FALSE
))
partition = as.integer(partition)
pred = PredictionClust$new(task = task, partition = partition)
} else if (self$predict_type == "prob") {
partition = unclass(ClusterR::predict_MBatchKMeans(
partition = unclass(invoke(ClusterR::predict_MBatchKMeans,
data = task$data(),
CENTROIDS = self$model$centroids,
fuzzy = TRUE
Expand Down
2 changes: 1 addition & 1 deletion R/LearnerClustOPTICS.R
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ LearnerClustOPTICS = R6Class("LearnerClustOPTICS",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("partitional", "exclusive", "complete"),
properties = c("density", "exclusive", "complete"),
packages = "dbscan",
man = "mlr3cluster::mlr_learners_clust.optics",
label = "OPTICS Clustering"
Expand Down
16 changes: 6 additions & 10 deletions R/LearnerClustPAM.R
Original file line number Diff line number Diff line change
Expand Up @@ -52,21 +52,17 @@ LearnerClustPAM = R6Class("LearnerClustPAM",
),
private = list(
.train = function(task) {
if (!is.null(self$param_set$values$medoids)) {
if (test_true(length(self$param_set$values$medoids) != self$param_set$values$k)) {
pv = self$param_set$get_values(tags = "train")
if (!is.null(pv$medoids)) {
if (length(pv$medoids) != pv$k) {
stopf("number of `medoids`' needs to match `k`!")
}
r = map_lgl(self$param_set$values$medoids, function(i) {
test_true(i <= task$nrow) && test_true(i >= 1L)
})
if (sum(r) != self$param_set$values$k) {
if (sum(pv$medoids <= task$nrow & pv$medoids >= 1L) != pv$k) {
msg = sprintf("`medoids` need to contain valid indices from 1")
msg = sprintf("%s to %s (number of observations)!", msg, self$param_set$values$k)
stopf(msg)
stopf("%s to %s (number of observations)!", msg, pv$k)
}
}

pv = self$param_set$get_values(tags = "train")
m = invoke(cluster::pam, x = task$data(), diss = FALSE, .args = pv)
if (self$save_assignments) {
self$assignments = m$clustering
Expand All @@ -76,7 +72,7 @@ LearnerClustPAM = R6Class("LearnerClustPAM",
},

.predict = function(task) {
partition = unclass(cl_predict(self$model, newdata = task$data(), type = "class_ids"))
partition = unclass(invoke(cl_predict, self$model, newdata = task$data(), type = "class_ids"))
PredictionClust$new(task = task, partition = partition)
}
)
Expand Down
4 changes: 2 additions & 2 deletions R/LearnerClustSimpleKMeans.R
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ LearnerClustSimpleKMeans = R6Class("LearnerClustSimpleKMeans",
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
names(pv) = chartr("_", "-", names(pv))
ctrl = do.call(RWeka::Weka_control, pv)
ctrl = invoke(RWeka::Weka_control, .args = pv)
m = invoke(RWeka::SimpleKMeans, x = task$data(), control = ctrl)
if (self$save_assignments) {
self$assignments = unname(m$class_ids + 1L)
Expand All @@ -68,7 +68,7 @@ LearnerClustSimpleKMeans = R6Class("LearnerClustSimpleKMeans",
},

.predict = function(task) {
partition = predict(self$model, newdata = task$data(), type = "class") + 1L
partition = invoke(predict, self$model, newdata = task$data(), type = "class") + 1L
PredictionClust$new(task = task, partition = partition)
}
)
Expand Down
4 changes: 2 additions & 2 deletions R/LearnerClustXMeans.R
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ LearnerClustXMeans = R6Class("LearnerClustXMeans",
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
names(pv) = chartr("_", "-", names(pv))
ctrl = do.call(RWeka::Weka_control, pv)
ctrl = invoke(RWeka::Weka_control, .args = pv)
m = invoke(RWeka::XMeans, x = task$data(), control = ctrl)
if (self$save_assignments) {
self$assignments = unname(m$class_ids + 1L)
Expand All @@ -67,7 +67,7 @@ LearnerClustXMeans = R6Class("LearnerClustXMeans",
},

.predict = function(task) {
partition = predict(self$model, newdata = task$data(), type = "class") + 1L
partition = invoke(predict, self$model, newdata = task$data(), type = "class") + 1L
PredictionClust$new(task = task, partition = partition)
}
)
Expand Down
5 changes: 2 additions & 3 deletions R/helper.R
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
warn_prediction_useless = function(id) {
msg = sprintf("Learner '%s' doesn't predict on new data and predictions may not make sense on new data", id)
warning(warningCondition(msg, class = "predictionUselessWarning"))
warningf("Learner '%s' doesn't predict on new data and predictions may not make sense on new data.", id)
}

allow_partial_matching = list(
Expand All @@ -9,7 +8,7 @@ allow_partial_matching = list(
warnPartialMatchDollar = FALSE
)

check_centers_param = function(centers, task, test_class, name) {
assert_centers_param = function(centers, task, test_class, name) {
if (test_class(centers) && ncol(centers) != task$ncol) {
stopf("`%s` must have same number of columns as data.", name)
}
Expand Down
Loading