-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
482 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
""" | ||
This file specifies how MLC's Xverse parameter maps from other formats, for example HuggingFace | ||
PyTorch, HuggingFace safetensors. | ||
""" | ||
|
||
import functools | ||
|
||
import numpy as np | ||
|
||
from mlc_llm.loader import ExternMapping | ||
from mlc_llm.quantization import Quantization | ||
|
||
from .xverse_model import XverseConfig, XverseForCausalLM | ||
|
||
|
||
def huggingface(model_config: XverseConfig, quantization: Quantization) -> ExternMapping: | ||
"""Returns a parameter mapping that maps from the names of MLC LLM parameters to | ||
the names of HuggingFace PyTorch parameters. | ||
Parameters | ||
---------- | ||
model_config : XverseConfig | ||
The configuration of the Xverse model. | ||
quantization : Quantization | ||
The quantization configuration. | ||
Returns | ||
------- | ||
param_map : ExternMapping | ||
The parameter mapping from MLC to HuggingFace PyTorch. | ||
""" | ||
model = XverseForCausalLM(model_config) | ||
if quantization is not None: | ||
model.to(quantization.model_dtype) | ||
_, _named_params, _ = model.export_tvm( # type: ignore[misc] | ||
spec=model.get_default_spec(), | ||
allow_extern=True, | ||
) | ||
named_parameters = dict(_named_params) | ||
|
||
mapping = ExternMapping() | ||
|
||
for i in range(model_config.num_hidden_layers): | ||
# Add QKV in self attention | ||
attn = f"model.layers.{i}.self_attn" | ||
mlc_name = f"{attn}.qkv_proj.weight" | ||
mlc_param = named_parameters[mlc_name] | ||
mapping.add_mapping( | ||
mlc_name, | ||
[ | ||
f"{attn}.q_proj.weight", | ||
f"{attn}.k_proj.weight", | ||
f"{attn}.v_proj.weight", | ||
], | ||
functools.partial( | ||
lambda q, k, v, dtype: np.concatenate([q, k, v], axis=0).astype(dtype), | ||
dtype=mlc_param.dtype, | ||
), | ||
) | ||
# Add gates in MLP | ||
mlp = f"model.layers.{i}.mlp" | ||
mlc_name = f"{mlp}.gate_up_proj.weight" | ||
mlc_param = named_parameters[mlc_name] | ||
mapping.add_mapping( | ||
mlc_name, | ||
[ | ||
f"{mlp}.gate_proj.weight", | ||
f"{mlp}.up_proj.weight", | ||
], | ||
functools.partial( | ||
lambda gate, up, dtype: np.concatenate([gate, up], axis=0).astype(dtype), | ||
dtype=mlc_param.dtype, | ||
), | ||
) | ||
|
||
for mlc_name, mlc_param in named_parameters.items(): | ||
if mlc_name not in mapping.param_map: | ||
mapping.add_mapping( | ||
mlc_name, | ||
[mlc_name], | ||
functools.partial( | ||
lambda x, dtype: x.astype(dtype), | ||
dtype=mlc_param.dtype, | ||
), | ||
) | ||
return mapping |
Oops, something went wrong.