cat-dog-mouse classifier hybrid of the following tutorial and repository:
https://stackabuse.com/creating-a-neural-network-from-scratch-in-python-multi-class-classification/
https://github.com/ardamavi/Dog-Cat-Classifier.
tensorboard --logdir=Data/Checkpoints/./logs
- Input Data Shape: 64x64x3
Layer 1:
-
Convolutional Layer 32 filter Filter shape: 3x3
-
Activation Function: ReLu
-
Max Pooling Pool shape: 2x2
Layer 2:
-
Convolutional Layer 32 filter Filter shape: 3x3
-
Activation Function: ReLu
-
Max Pooling Pool shape: 2x2
Layer 3:
-
Convolutional Layer 64 filter Filter shape: 3x3
-
Activation Function: ReLu
-
Max Pooling Pool shape: 2x2
Classification:
-
Flatten
-
Dense Size: 64
-
Activation Function: ReLu
-
Dropout Rate: 0.5
-
Dense Size: 2
-
Activation Function: Sigmoid
If you want to add new dataset to datasets, you create a directory and rename what you want to add category (like 'cat' or 'phone').
If you want to add a new training image to previously category datasets, you add a image to about category directory and if you have npy
files in Data
folder delete npy_train_data
folder.
Note: We work on 64x64 image also if you use bigger or smaller, program will automatically return to 64x64.
- Used Python Version: 3.6.9
- tensorflow version 2.0.1
- Install necessary modules with
sudo pip3 install -r requirements.txt
command.