-
Notifications
You must be signed in to change notification settings - Fork 331
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: aoiasd <[email protected]>
- Loading branch information
Showing
2 changed files
with
314 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# hello_text_match.py demonstrates how to insert raw data only into Milvus and perform | ||
# document retrieval based on specific terms by text match expression. | ||
# 1. connect to Milvus | ||
# 2. create collection | ||
# 3. insert data | ||
# 4. create index | ||
# 5. search, query, and filtering search on entities | ||
# 7. drop collection | ||
import time | ||
import numpy as np | ||
|
||
|
||
|
||
from pymilvus import ( | ||
connections, | ||
utility, | ||
FieldSchema, CollectionSchema, Function, DataType, FunctionType, | ||
Collection, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
search_latency_fmt = "search latency = {:.4f}s" | ||
dim = 8 | ||
|
||
################################################################################# | ||
# 1. connect to Milvus | ||
# Add a new connection alias `default` for Milvus server in `localhost:19530` | ||
print(fmt.format("start connecting to Milvus")) | ||
connections.connect("default", host="localhost", port="19530") | ||
|
||
has = utility.has_collection("hello_text_match") | ||
print(f"Does collection hello_text_match exist in Milvus: {has}") | ||
|
||
################################################################################# | ||
# 2. create collection | ||
# We're going to create a collection with 2 explicit fields and a function. | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# | | field name | field type | other attributes | field description | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# |1| "id" | INT64 | is_primary=True | "primary field" | | ||
# | | | | auto_id=False | | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# |2| "document" | VarChar | enable_analyzer=True | "raw text document" | | ||
# | | | | enable_match=True | | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
fields = [ | ||
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True), | ||
FieldSchema(name="document", dtype=DataType.VARCHAR, max_length=1000, enable_analyzer=True, enable_match=True), | ||
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim) | ||
] | ||
|
||
|
||
schema = CollectionSchema(fields, "hello_text_match demo") | ||
|
||
print(fmt.format("Create collection `hello_text_match`")) | ||
hello_text_match = Collection("hello_text_match", schema, consistency_level="Strong") | ||
|
||
################################################################################ | ||
# 3. insert data | ||
# We are going to insert 6 rows of data into `hello_text_match` | ||
# Data to be inserted must be organized in fields. | ||
# | ||
# The insert() method returns: | ||
# - either automatically generated primary keys by Milvus if auto_id=True in the schema; | ||
# - or the existing primary key field from the entities if auto_id=False in the schema. | ||
|
||
print(fmt.format("Start inserting entities")) | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
num_entities = 6 | ||
keywords = ["milvus", "match", "search", "query", "analyzer", "tokenizer"] | ||
|
||
entities = [ | ||
[f"This is a test document {i + hello_text_match.num_entities} with keywords: {keywords[i]}" for i in range(num_entities)], | ||
rng.random((num_entities, dim), np.float32) | ||
] | ||
|
||
insert_result = hello_text_match.insert(entities) | ||
ids = insert_result.primary_keys | ||
|
||
hello_text_match.flush() | ||
print(f"Number of entities in Milvus: {hello_text_match.num_entities}") # check the num_entities | ||
|
||
################################################################################ | ||
# 4. create index | ||
# We are going to create an vector index for hello_text_match collection | ||
print(fmt.format("Start Creating index AUTOINDEX")) | ||
index = { | ||
"index_type": "AUTOINDEX", | ||
"metric_type": "IP", | ||
} | ||
|
||
hello_text_match.create_index("embeddings", index) | ||
################################################################################ | ||
# 5. query and scalar filtering search with text match | ||
# After data were inserted into Milvus and indexed, you can perform: | ||
# - query with text match expression | ||
# - search data with text match filter | ||
|
||
# Before conducting a search or a query, you need to load the data in `hello_text_match` into memory. | ||
print(fmt.format("Start loading")) | ||
hello_text_match.load() | ||
|
||
# ----------------------------------------------------------------------------- | ||
# query based text match with single keyword | ||
expr = f"TEXT_MATCH(document, '{keywords[0]}')" | ||
print(fmt.format(f"Start querying with `{expr}`")) | ||
|
||
start_time = time.time() | ||
result = hello_text_match.query(expr=expr, output_fields=["document"]) | ||
end_time = time.time() | ||
|
||
print(f"query result:\n-{result[0]}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
# query based text match with mutiple keywords | ||
expr = f"TEXT_MATCH(document, '{keywords[0]} {keywords[1]} {keywords[2]}')" | ||
print(fmt.format(f"Start querying with `{expr}`")) | ||
|
||
start_time = time.time() | ||
result = hello_text_match.query(expr=expr, output_fields=["document"]) | ||
end_time = time.time() | ||
|
||
print(f"query result:\n-{result[0]}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
# ----------------------------------------------------------------------------- | ||
# scalar filtering search with text match | ||
search_params = { | ||
"metric_type": "IP", | ||
"params": {}, | ||
} | ||
expr = f"TEXT_MATCH(document, '{keywords[0]} {keywords[1]} {keywords[2]}')" | ||
print(fmt.format(f"Start filtered searching with `{expr}`")) | ||
|
||
start_time = time.time() | ||
vector_to_search = rng.random((1, dim), np.float32) | ||
result = hello_text_match.search(vector_to_search, "embeddings", search_params, limit=3, expr=expr, output_fields=["document"]) | ||
end_time = time.time() | ||
|
||
for hits in result: | ||
for hit in hits: | ||
print(f"\thit: {hit}, document field: {hit.entity.get('document')}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
############################################################################### | ||
# 6. delete entities by text match | ||
# You can delete entities by their PK values using boolean expressions. | ||
|
||
expr = f"TEXT_MATCH(document, '{keywords[4]}')" | ||
print(fmt.format(f"Start deleting with expr `{expr}`")) | ||
|
||
result = hello_text_match.query(expr=expr, output_fields=["document"]) | ||
print(f"query before delete by expr=`{expr}` -> result: \n- {result[0]}\n") | ||
|
||
hello_text_match.delete(expr) | ||
|
||
result = hello_text_match.query(expr=expr, output_fields=["document"]) | ||
print(f"query after delete by expr=`{expr}` -> result: {result}\n") | ||
|
||
|
||
############################################################################### | ||
# 7. drop collection | ||
# Finally, drop the hello_text_match collection | ||
print(fmt.format("Drop collection `hello_text_match`")) | ||
utility.drop_collection("hello_text_match") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
# hello_text_match.py demonstrates how to insert raw data only into Milvus and perform | ||
# document retrieval based on specific terms by text match expression. | ||
# 1. connect to Milvus | ||
# 2. create collection | ||
# 3. insert data | ||
# 4. search, query, and filtering search on entities | ||
# 5. drop collection | ||
import time | ||
import numpy as np | ||
|
||
from pymilvus import ( | ||
MilvusClient, | ||
Function, | ||
FunctionType, | ||
DataType, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
collection_name = "text_match" | ||
dim = 8 | ||
|
||
################################################################################# | ||
# 1. connect to Milvus | ||
# Add a new connection alias `default` for Milvus server in `localhost:19530` | ||
print(fmt.format("start connecting to Milvus")) | ||
milvus_client = MilvusClient("http://localhost:19530") | ||
|
||
has_collection = milvus_client.has_collection(collection_name, timeout=5) | ||
print(f"Does collection hello_text_match exist in Milvus: {has_collection}") | ||
if has_collection: | ||
milvus_client.drop_collection(collection_name) | ||
|
||
################################################################################# | ||
# 2. create collection | ||
# We're going to create a collection with 3 explicit fields. | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# | | field name | field type | other attributes | field description | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# |1| "id" | INT64 | is_primary=True | "primary field" | | ||
# | | | | auto_id=False | | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# |2| "document" | VarChar | enable_analyzer=True | "raw text document" | | ||
# | | | | enable_match=True | | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" | | ||
# +-+------------+------------+----------------------+------------------------------+ | ||
|
||
schema = milvus_client.create_schema() | ||
schema.add_field("id", DataType.INT64, is_primary=True, auto_id=False) | ||
schema.add_field("document", DataType.VARCHAR, max_length=1000, enable_analyzer=True, enable_match=True), | ||
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim) | ||
|
||
print(fmt.format("Create collection `hello_text_match`")) | ||
|
||
index_params = milvus_client.prepare_index_params() | ||
index_params.add_index( | ||
"embeddings", | ||
index_type= "AUTOINDEX", | ||
metric_type= "IP" | ||
) | ||
|
||
milvus_client.create_collection(collection_name, schema=schema, index_params=index_params, consistency_level="Strong") | ||
|
||
################################################################################ | ||
# 3. insert data | ||
# We are going to insert 6 rows of data into `hello_text_match` | ||
# Data to be inserted must be organized in fields. | ||
# | ||
# The insert() method returns: | ||
# - either automatically generated primary keys by Milvus if auto_id=True in the schema; | ||
# - or the existing primary key field from the entities if auto_id=False in the schema. | ||
|
||
print(fmt.format("Start inserting entities")) | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
num_entities = 6 | ||
keywords = ["milvus", "match", "search", "query", "analyzer", "tokenizer"] | ||
embeddings = rng.random((num_entities, dim), np.float32) | ||
|
||
entities = [{ | ||
"id": i, | ||
"document":f"This is a test document {i} with keywords: {keywords[i]}", | ||
"embeddings": embeddings[i] | ||
} for i in range(num_entities) | ||
] | ||
|
||
insert_result = milvus_client.insert(collection_name, entities) | ||
print(f"Number of insert entities in Milvus: {insert_result['insert_count']}") # check the num_entities | ||
milvus_client.flush(collection_name) | ||
|
||
# ############################################################################### | ||
# 4. query and scalar filtering search with text match | ||
# After data were inserted into Milvus and indexed, you can perform: | ||
# - query with text match expression | ||
# - search data with text match filter | ||
|
||
# ----------------------------------------------------------------------------- | ||
# query based text match with single keyword filter | ||
filter = f"TEXT_MATCH(document, '{keywords[0]}')" | ||
print(fmt.format(f"Start querying with `{filter}`")) | ||
|
||
result = milvus_client.query(collection_name, filter, output_fields=["document"]) | ||
print(f"query result:\n-{result}") | ||
|
||
# query based text match with mutiple keywords | ||
filter = f"TEXT_MATCH(document, '{keywords[0]} {keywords[1]} {keywords[2]}')" | ||
print(fmt.format(f"Start querying with `{filter}`")) | ||
|
||
result = milvus_client.query(collection_name, filter, output_fields=["document"]) | ||
print(f"query result:\n-{result}") | ||
|
||
# ----------------------------------------------------------------------------- | ||
# scalar filtering search with text match | ||
search_params = { | ||
"metric_type": "IP", | ||
"params": {}, | ||
} | ||
filter = f"TEXT_MATCH(document, '{keywords[0]} {keywords[1]} {keywords[2]}')" | ||
print(fmt.format(f"Start filtered searching with `{filter}`")) | ||
|
||
vector_to_search = rng.random((1, dim), np.float32) | ||
result = milvus_client.search(collection_name ,vector_to_search, filter, anns_field="embeddings", search_params=search_params, limit=3, output_fields=["document"]) | ||
|
||
print(result) | ||
|
||
############################################################################### | ||
# 6. delete entities by text match filter | ||
# You can delete entities by their PK values using boolean expressions. | ||
|
||
filter = f"TEXT_MATCH(document, '{keywords[4]}')" | ||
print(fmt.format(f"Start deleting with expr `{filter}`")) | ||
|
||
result = milvus_client.query(collection_name, filter, output_fields=["document"]) | ||
print(f"query before delete by expr=`{filter}` -> result: \n- {result}\n") | ||
|
||
milvus_client.delete(collection_name, filter=filter) | ||
|
||
result = milvus_client.query(collection_name, filter, output_fields=["document"]) | ||
print(f"query after delete by expr=`{filter}` -> result: {result}\n") | ||
|
||
|
||
############################################################################### | ||
# 5. drop collection | ||
# Finally, drop the hello_text_match collection | ||
print(fmt.format(f"Drop collection `{collection_name}`")) | ||
milvus_client.drop_collection(collection_name) |