-
Notifications
You must be signed in to change notification settings - Fork 334
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat:add geospatial api support for py client
fix: complete geospatial impl
- Loading branch information
1 parent
6cc2e55
commit 2376f6a
Showing
17 changed files
with
2,040 additions
and
817 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
import numpy as np | ||
import random | ||
|
||
def random_point()->str: | ||
x = random.uniform(-90, 90) | ||
y = random.uniform(-180, 180) | ||
return f"POINT ({x:.3f} {y:.3f})" | ||
|
||
def random_linestring(num_points)->str: | ||
points = ", ".join(f"{random.uniform(-90, 90):.3f} {random.uniform(-180, 180):.3f}" for _ in range(num_points)) | ||
return f"LINESTRING ({points})" | ||
|
||
def random_polygon(num_points: int) -> str: | ||
points = [ | ||
f"{random.uniform(-90, 90):.3f} {random.uniform(-180, 180):.3f}" | ||
for _ in range(num_points) | ||
] | ||
# 闭合多边形 | ||
points.append(points[0]) # 将第一个点再添加一次 | ||
return f"POLYGON(({', '.join(points)}))" | ||
|
||
|
||
def generate_data(num): | ||
data = list() | ||
for i in range(num): | ||
if i%3==0: | ||
data.append(random_point()) | ||
elif i%3==1: | ||
data.append(random_linestring(random.randint(2,9))) | ||
else: | ||
data.append(random_polygon(random.randint(3,9))) | ||
return data | ||
|
||
def main(): | ||
num_entities = 10 | ||
data = generate_data(num_entities) | ||
for item in data: | ||
print(item) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python SDK of Milvus. | ||
# 1. connect to Milvus | ||
# 2. create collection | ||
# 3. insert data | ||
# 4. create index | ||
# 5. search, query, and hybrid search on entities | ||
# 6. delete entities by PK | ||
# 7. drop collection | ||
import time | ||
|
||
import numpy as np | ||
from pymilvus import ( | ||
connections, | ||
utility, | ||
FieldSchema, CollectionSchema, DataType, | ||
Collection, | ||
) | ||
from genwkt import generate_data | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
search_latency_fmt = "search latency = {:.4f}s" | ||
num_entities, dim = 3000, 8 | ||
|
||
################################################################################# | ||
# 1. connect to Milvus | ||
# Add a new connection alias `default` for Milvus server in `localhost:19530` | ||
# Actually the "default" alias is a buildin in PyMilvus. | ||
# If the address of Milvus is the same as `localhost:19530`, you can omit all | ||
# parameters and call the method as: `connections.connect()`. | ||
# | ||
# Note: the `using` parameter of the following methods is default to "default". | ||
print(fmt.format("start connecting to Milvus")) | ||
connections.connect("default", host="localhost", port="19530") | ||
|
||
has = utility.has_collection("hello_milvus") | ||
print(f"Does collection hello_milvus exist in Milvus: {has}") | ||
|
||
################################################################################# | ||
# 2. create collection | ||
# We're going to create a collection with 3 fields. | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# | | field name | field type | other attributes | field description | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |1| "pk" | VarChar | is_primary=True | "primary field" | | ||
# | | | | auto_id=False | | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |2| "random" | Double | | "a double field" | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
fields = [ | ||
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100), | ||
FieldSchema(name="random", dtype=DataType.DOUBLE), | ||
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim), | ||
FieldSchema(name="geospatial",dtype=DataType.GEOSPATIAL) | ||
] | ||
|
||
schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs") | ||
|
||
print(fmt.format("Create collection `hello_milvus`")) | ||
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong") | ||
print(f"The milvus describetion: {hello_milvus.describe()}") | ||
|
||
################################################################################ | ||
# 3. insert data | ||
# We are going to insert 3000 rows of data into `hello_milvus` | ||
# Data to be inserted must be organized in fields. | ||
# | ||
# The insert() method returns: | ||
# - either automatically generated primary keys by Milvus if auto_id=True in the schema; | ||
# - or the existing primary key field from the entities if auto_id=False in the schema. | ||
|
||
print(fmt.format("Start inserting entities")) | ||
rng = np.random.default_rng(seed=19530) | ||
entities = [ | ||
# provide the pk field because `auto_id` is set to False | ||
[str(i) for i in range(num_entities)], | ||
rng.random(num_entities).tolist(), # field random, only supports list | ||
rng.random((num_entities, dim), np.float32), # field embeddings, supports numpy.ndarray and list | ||
generate_data(num_entities) #field geospatial,wkt list | ||
] | ||
|
||
# print(entities) | ||
insert_result = hello_milvus.insert(entities) | ||
|
||
row = { | ||
"pk": "19530", | ||
"random": 0.5, | ||
"embeddings": rng.random((1, dim), np.float32)[0], | ||
"geospatial": "POINT (-84.036 39.997)" | ||
} | ||
hello_milvus.insert(row) | ||
row = { | ||
"pk": "19531", | ||
"random": 0.5, | ||
"embeddings": rng.random((1, dim), np.float32)[0], | ||
"geospatial": "POLYGON ((0 0, 0 2, 2 2, 2 0, 0 0))" | ||
} | ||
hello_milvus.insert(row) | ||
row = { | ||
"pk": "19532", | ||
"random": 0.5, | ||
"embeddings": rng.random((1, dim), np.float32)[0], | ||
"geospatial": "POLYGON ((1 1, 1 3, 3 3, 3 1, 1 1))" | ||
} | ||
hello_milvus.insert(row) | ||
|
||
hello_milvus.flush() | ||
print(f"Number of entities in Milvus: {hello_milvus.num_entities}") # check the num_entities | ||
|
||
b=0 | ||
input(b) | ||
|
||
################################################################################ | ||
# 4. create index | ||
# We are going to create an IVF_FLAT index for hello_milvus collection. | ||
# create_index() can only be applied to `FloatVector` and `BinaryVector` fields. | ||
print(fmt.format("Start Creating index IVF_FLAT")) | ||
index = { | ||
"index_type": "IVF_FLAT", | ||
"metric_type": "L2", | ||
"params": {"nlist": 128}, | ||
} | ||
|
||
hello_milvus.create_index("embeddings", index) | ||
|
||
################################################################################ | ||
# 5. search, query, and hybrid search | ||
# After data were inserted into Milvus and indexed, you can perform: | ||
# - search based on vector similarity | ||
# - query based on scalar filtering(boolean, int, etc.) | ||
# - hybrid search based on vector similarity and scalar filtering. | ||
# | ||
|
||
# Before conducting a search or a query, you need to load the data in `hello_milvus` into memory. | ||
print(fmt.format("Start loading")) | ||
hello_milvus.load() | ||
|
||
a=0 | ||
input(a) | ||
|
||
# ----------------------------------------------------------------------------- | ||
# search based on vector similarity | ||
print(fmt.format("Start searching based on vector similarity")) | ||
vectors_to_search = entities[-2][-2:] | ||
search_params = { | ||
"metric_type": "L2", | ||
"params": {"nprobe": 10}, | ||
} | ||
|
||
start_time = time.time() | ||
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["geospatial"]) | ||
end_time = time.time() | ||
|
||
for hits in result: | ||
for hit in hits: | ||
print(f"hit: {hit}, random field: {hit.entity.get('random')}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
# ----------------------------------------------------------------------------- | ||
# query based on scalar filtering(boolean, int, etc.) | ||
print(fmt.format("Start querying with GIS FUNC")) | ||
|
||
start_time = time.time() | ||
result1 = hello_milvus.query(expr="geospatial_equals(geospatial,'POINT (-84.036 39.997)')", output_fields=["random", "geospatial"]) | ||
result2 = hello_milvus.query(expr="geospatial_touches(geospatial,'POLYGON ((0 0, -1 0, -1 -1, 0 -1, 0 0))')", output_fields=["random", "geospatial"]) | ||
result3 = hello_milvus.query(expr="geospatial_overlaps(geospatial,'POLYGON ((6 0, 6 5, 8 5, 8 0, 6 0))')", output_fields=["random", "geospatial"]) | ||
result4 = hello_milvus.query(expr="geospatial_crosses(geospatial,'POLYGON ((6 0, 6 5, 8 5, 8 0, 6 0))')", output_fields=["random", "geospatial"]) | ||
result5 = hello_milvus.query(expr="geospatial_contains(geospatial,'POLYGON ((6 0, 6 5, 8 5, 8 0, 6 0))')", output_fields=["random", "geospatial"]) | ||
result6 = hello_milvus.query(expr="geospatial_intersects(geospatial,'POLYGON ((6 0, 6 5, 8 5, 8 0, 6 0))')", output_fields=["random", "geospatial"]) | ||
# the within realationship operator refers to which data in geo field within the wkt literal | ||
result7 = hello_milvus.query(expr="geospatial_within(geospatial,'POLYGON ((0 0, 0 4, 4 4, 4 0, 0 0))')", output_fields=["random", "geospatial"]) | ||
end_time = time.time() | ||
|
||
print(f"equals query result1:\n-{result1[0]}") | ||
print(f"touches query result2:\n-{result2[0]}") | ||
print(f"overlaps query result3:\n-{result3[0]}") | ||
print(f"crosses query result4:\n-{result4[0]}") | ||
print(f"contains query result5:\n-{result5[0]}") | ||
print(f"intersects query result6:\n-{result6[0]}") | ||
print(f"within query result7:\n-{result7[0]}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
# ----------------------------------------------------------------------------- | ||
# pagination | ||
r1 = hello_milvus.query(expr="random > 0.5", limit=4, output_fields=["random"]) | ||
r2 = hello_milvus.query(expr="random > 0.5", offset=1, limit=3, output_fields=["random"]) | ||
print(f"query pagination(limit=4):\n\t{r1}") | ||
print(f"query pagination(offset=1, limit=3):\n\t{r2}") | ||
|
||
|
||
# ----------------------------------------------------------------------------- | ||
# hybrid search | ||
print(fmt.format("Start hybrid searching with `random > 0.5`")) | ||
|
||
start_time = time.time() | ||
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > 0.5", output_fields=["random"]) | ||
end_time = time.time() | ||
|
||
for hits in result: | ||
for hit in hits: | ||
print(f"hit: {hit}, random field: {hit.entity.get('random')}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
############################################################################### | ||
# 6. delete entities by PK | ||
# You can delete entities by their PK values using boolean expressions. | ||
ids = insert_result.primary_keys | ||
|
||
expr = f'pk in ["{ids[0]}" , "{ids[1]}"]' | ||
print(fmt.format(f"Start deleting with expr `{expr}`")) | ||
|
||
result = hello_milvus.query(expr=expr, output_fields=["random", "geospatial"]) | ||
print(f"query before delete by expr=`{expr}` -> result: \n-{result[0]}\n-{result[1]}\n") | ||
|
||
hello_milvus.delete(expr) | ||
|
||
result = hello_milvus.query(expr=expr, output_fields=["random", "geospatial"]) | ||
print(f"query after delete by expr=`{expr}` -> result: {result}\n") | ||
|
||
|
||
############################################################################### | ||
# 7. drop collection | ||
# Finally, drop the hello_milvus collection | ||
print(fmt.format("Drop collection `hello_milvus`")) | ||
utility.drop_collection("hello_milvus") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.