-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
"""Draw Samples. | ||
This script draws samples from a checkpoint. | ||
THIS SCRIPT IS AN EXAMPLE. IT SHOULD BE MODIFIED DEPENDING ON USER PREFERENCES. | ||
""" | ||
import logging | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import torch | ||
|
||
from crystal_diffusion.generators.instantiate_generator import \ | ||
instantiate_generator | ||
from crystal_diffusion.generators.predictor_corrector_position_generator import \ | ||
PredictorCorrectorSamplingParameters | ||
from crystal_diffusion.models.position_diffusion_lightning_model import \ | ||
PositionDiffusionLightningModel | ||
from crystal_diffusion.oracle.energies import compute_oracle_energies | ||
from crystal_diffusion.samplers.variance_sampler import NoiseParameters | ||
from crystal_diffusion.samples_and_metrics.sampling import \ | ||
create_batch_of_samples | ||
from crystal_diffusion.utils.logging_utils import setup_analysis_logger | ||
|
||
logger = logging.getLogger(__name__) | ||
setup_analysis_logger() | ||
|
||
checkpoint_path = ("/network/scratch/r/rousseab/experiments/sept21_egnn_2x2x2/run4/" | ||
"output/best_model/best_model-epoch=024-step=019550.ckpt") | ||
samples_dir = Path( | ||
"/network/scratch/r/rousseab/experiments/sept21_egnn_2x2x2/run4_samples/samples" | ||
) | ||
samples_dir.mkdir(exist_ok=True) | ||
|
||
device = torch.device("cuda") | ||
|
||
|
||
spatial_dimension = 3 | ||
number_of_atoms = 64 | ||
atom_types = np.ones(number_of_atoms, dtype=int) | ||
|
||
acell = 10.86 | ||
box = np.diag([acell, acell, acell]) | ||
|
||
number_of_samples = 128 | ||
total_time_steps = 1000 | ||
number_of_corrector_steps = 1 | ||
|
||
noise_parameters = NoiseParameters( | ||
total_time_steps=total_time_steps, | ||
corrector_step_epsilon=2e-7, | ||
sigma_min=0.0001, | ||
sigma_max=0.2, | ||
) | ||
|
||
sampling_parameters = PredictorCorrectorSamplingParameters( | ||
number_of_corrector_steps=number_of_corrector_steps, | ||
spatial_dimension=spatial_dimension, | ||
number_of_atoms=number_of_atoms, | ||
number_of_samples=number_of_samples, | ||
cell_dimensions=[acell, acell, acell], | ||
record_samples=True, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
logger.info("Loading checkpoint...") | ||
pl_model = PositionDiffusionLightningModel.load_from_checkpoint(checkpoint_path) | ||
pl_model.eval() | ||
|
||
sigma_normalized_score_network = pl_model.sigma_normalized_score_network | ||
|
||
logger.info("Instantiate generator...") | ||
position_generator = instantiate_generator( | ||
sampling_parameters=sampling_parameters, | ||
noise_parameters=noise_parameters, | ||
sigma_normalized_score_network=sigma_normalized_score_network, | ||
) | ||
|
||
logger.info("Drawing samples...") | ||
with torch.no_grad(): | ||
samples_batch = create_batch_of_samples( | ||
generator=position_generator, | ||
sampling_parameters=sampling_parameters, | ||
device=device, | ||
) | ||
|
||
sample_output_path = str(samples_dir / "diffusion_samples.pt") | ||
position_generator.sample_trajectory_recorder.write_to_pickle(sample_output_path) | ||
logger.info("Done Generating Samples") | ||
|
||
logger.info("Compute energy from Oracle") | ||
sample_energies = compute_oracle_energies(samples_batch) | ||
|
||
energy_output_path = str(samples_dir / "diffusion_energies.pt") | ||
with open(energy_output_path, "wb") as fd: | ||
torch.save(sample_energies, fd) |