A pirate plot is a way of displaying data where a continuous dependent variable is a function of a categorical independent variable, in a more informative way than the traditional barplot. geom_pirate()
plots the raw data as points (using ggplot2::geom_jitter()
), along with layers showing descriptive and inferential statistics -- bars indicating means (using ggplot2::geom_col()
), horizontal line indicating means (using ggplot2::geom_crossbar()
), boxes indicating 95% confidence intervals assuming a normal sampling distribution (using ggplot2::geom_tile()
), and violins indicating the density (using ggplot2::geom_violin()
).
You can install ggpirate from github with:
# install.packages("devtools")
devtools::install_github("mikabr/ggpirate")
library(ggpirate)
theme_set(theme_bw())
Colour pirate plot:
ggplot(mpg, aes(x = class, y = cty)) +
geom_pirate(aes(colour = class, fill = class))
Each of the layers can be turned off, e.g. for just means and confidence intervals:
ggplot(mpg, aes(x = class, y = cty)) +
geom_pirate(aes(colour = class),
points = FALSE, bars = FALSE, violins = FALSE)
Colour can be mapped to a different variable than the x axis, resulting in dodged subgroups:
mpg2 <- dplyr::mutate(mpg, drv = factor(drv))
ggplot(mpg2, aes(x = class, y = cty)) +
geom_pirate(aes(colour = drv, fill = drv), show.legend = TRUE)
And it plays well with facetting:
mpg_gather <- tidyr::gather(mpg, type, mileage, cty, hwy)
ggplot(mpg_gather, aes(x = class, y = mileage)) +
facet_wrap(~type) +
geom_pirate(aes(colour = class, fill = class))
Finally, the parameters passed to any of the layers can be adjusted, e.g.:
ggplot(mpg, aes(x = class, y = cty)) +
geom_pirate(aes(colour = class), bars = FALSE,
points_params = list(shape = 19, alpha = 0.2),
lines_params = list(size = 0.8))