Skip to content

Commit

Permalink
update README and notebooks
Browse files Browse the repository at this point in the history
  • Loading branch information
Hhhhhhao committed Jul 14, 2022
1 parent a5e03e2 commit 24932bc
Show file tree
Hide file tree
Showing 4 changed files with 185 additions and 117 deletions.
103 changes: 55 additions & 48 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
<br />
<div align="center">
<a href="https://github.com/microsoft/Semi-supervised-learning">
<img src="figures/logo.png" alt="Logo" width="320" height="120">
<img src="figures/logo.png" alt="Logo" width="400" height="160">
</a>

<h3 align="center">USB</h3>
Expand Down Expand Up @@ -57,12 +57,8 @@
<details>
<summary>Table of Contents</summary>
<ol>
<li>
<a href="#news-and-updates">News and Updates</a>
</li>
<li>
<a href="#intro">Introduction</a>
</li>
<li><a href="#news-and-updates">News and Updates</a></li>
<li><a href="#intro">Introduction</a></li>
<li>
<a href="#getting-started">Getting Started</a>
<ul>
Expand All @@ -71,12 +67,10 @@
</ul>
</li>
<li><a href="#usage">Usage</a></li>
<li><a href="#model-zoo">Model Zoo</a></li>
<li><a href="#benchmark-results">Benchmark Results</a></li>
<li><a href="#roadmap">Roadmap</a></li>
<li><a href="#contributing">Contributing</a></li>
<li><a href="#model-zoo">Model Zoo</a></li>
<li><a href="#contributing">Community</a></li>
<li><a href="#license">License</a></li>
<li><a href="#contact">Contact</a></li>
<li><a href="#acknowledgments">Acknowledgments</a></li>
</ol>
</details>
Expand All @@ -95,27 +89,22 @@ USB is a Pytorch-based Python package for Semi-Supervised Learning (SSL). It is
## Getting Started

This is an example of how to set up USB locally.
To get a local copy up and running follow these simple example steps.
To get a local copy up, running follow these simple example steps.

### Prerequisites

USB is built on pytorch, with torchvision, torchaudio, and transformers.

To install the required packages, you can create a conda environment:
```sh
conda install --name usb --file environment.txt
conda create --name usb python=3.8
```

or use pip:
then use pip to install required packages:
```sh
pip install -r requirements.txt
```

or docker:
```sh
add docker
```

### Installation

We provide a Python package of USB for users who want to start training/testing the supported SSL algorithms on their data quickly:
Expand All @@ -138,16 +127,14 @@ git clone https://github.com/microsoft/Semi-supervised-learning.git
<!-- USAGE EXAMPLES -->
## Usage

Use this space to show useful examples of how a project can be used. Additional screenshots, code examples and demos work well in this space. You may also link to more resources.
USB is easy to use and extend. Going through the belowing examples will help you faimiliar with USB for quick use, evaluate an exsiting SSL algorithm on your own dataset, or developing new SSL algorithms.

### Quick Start
### Quick Start with USB package
<!-- TODO: add quick start example and refer lighting notebook -->
Please see [Installation](#installation) to install USB first. We provide colab tutorials for:

- [A beginning example](notebooks/Beginner_Example.ipynb)
- [Customize models](notebooks/Custom_Algorithm.ipynb)
- [Beginning example](notebooks/Beginner_Example.ipynb)
- [Customize datasets](notebooks/Custom_Dataset.ipynb)
- [USB lighting](notebooks/lighting_example.ipynb)

### Training
Here is an example to train FixMatch on CIFAR-100 with 200 labels. Trianing other supported algorithms (on other datasets with different label settings) can be specified by a config file:
Expand All @@ -162,37 +149,38 @@ python eval.py --dataset cifar100 --num_classes 100 --load_path /PATH/TO/CHECKPO
```

### Develop
TODO: add develop example notebook
Check the developing documentation for creating your own SSL algorithm!


_For more examples, please refer to the [Documentation](https://example.com)_

<p align="right">(<a href="#top">back to top</a>)</p>


<!-- MODEL ZOO -->
## Model Zoo
<!-- BENCHMARK RESULTS -->
## Benchmark Results

TODO: add pre-trained models.
Please refer to [Results](./results) for benchmark results on different tasks.

<p align="right">(<a href="#top">back to top</a>)</p>


<!-- BENCHMARK RESULTS -->
## Benchmark Results
<!-- MODEL ZOO -->
## Model Zoo

Please refer to Results for benchmark results.
TODO: add pre-trained models.

<p align="right">(<a href="#top">back to top</a>)</p>



<!-- ROADMAP -->
## Roadmap
## TODO

- [ ] Add docker
- [ ] Add Logo figures
- [ ] Finish Readme
- [ ] Compile docs and add usage example in docs
- [ ] Create Colab Notebooks
- [ ] Check Notebooks Create Colab Notebooks
- [ ] Updating SUPPORT.MD with content about this project's support experience
- [ ] Multi-language Support
- [ ] Chinese
Expand Down Expand Up @@ -220,10 +208,10 @@ contact [[email protected]](mailto:[email protected]) with any additio
If you have a suggestion that would make USB better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement".
Don't forget to give the project a star! Thanks again!

1. Fork the Project
2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the Branch (`git push origin feature/AmazingFeature`)
1. Fork the project
2. Create your branch (`git checkout -b your_name/your_branch`)
3. Commit your changes (`git commit -m 'Add some features'`)
4. Push to the branch (`git push origin your_name/your_branch`)
5. Open a Pull Request

<p align="right">(<a href="#top">back to top</a>)</p>
Expand All @@ -249,28 +237,47 @@ Distributed under the MIT License. See `LICENSE.txt` for more information.


<!-- CONTACT -->
## Contributors and Contact
## Community and Contact

Your Name - [@your_twitter](https://twitter.com/your_username) - [email protected]

Project Link: [https://github.com/your_username/repo_name](https://github.com/your_username/repo_name)
The USB comunity is maintained by:
- Yidong Wang (),
- Hao Chen ([email protected]), Carnegie Mellon University
- Yue Fan (),
- Wenxin Hou (),
- Ran Tao (),
- Jindong Wang (),

<p align="right">(<a href="#top">back to top</a>)</p>

<!-- CITE -->
## Cite
## Citing USB
Please cite us if you fine USB helpful for your project/paper:

```
@article{},
title={},
author={},
booktitle={},
year={}
}
```


<!-- ACKNOWLEDGMENTS -->
## Acknowledgments

TODO: add acknowledges
We thanks the following projects for reference of creating USB:

<p align="right">(<a href="#top">back to top</a>)</p>
- [TorchSSL](https://github.com/TorchSSL/TorchSSL)
- [FixMatch](https://github.com/google-research/fixmatch)
- [CoMatch](https://github.com/salesforce/CoMatch)
- [SimMatch](https://github.com/KyleZheng1997/simmatch)
- [HuggingFace](https://huggingface.co/docs/transformers/index)
- [Pytorch Lighting](https://github.com/Lightning-AI/lightning)
- [README Template](https://github.com/othneildrew/Best-README-Template)


<!-- References -->
## References
TODO: add reference markdown
<p align="right">(<a href="#top">back to top</a>)</p>


<!-- MARKDOWN LINKS & IMAGES -->
Expand Down
6 changes: 3 additions & 3 deletions notebooks/Beginner_Example.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
}
},
"source": [
"## This tutorial will walk you through the basics of using the `torchssl-lightning` framework. Let's get started by training a FixMatch model on CIFAR-10!"
"## This tutorial will walk you through the basics of using the `usb` lighting package. Let's get started by training a FixMatch model on CIFAR-10!"
]
},
{
Expand All @@ -36,8 +36,8 @@
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('../')\n",
"from src import get_dataset, get_data_loader, net_builder, get_algorithm, get_config, Trainer"
"# sys.path.append('../')\n",
"from usb import get_dataset, get_data_loader, net_builder, get_algorithm, get_config, Trainer"
]
},
{
Expand Down
Loading

0 comments on commit 24932bc

Please sign in to comment.