-
Notifications
You must be signed in to change notification settings - Fork 4.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add unit stage3 test for running model twice in one step
If run model more than once in one training step, there may be issues. Add unit test to catch these kinds of problems. Signed-off-by: Wenbin Chen <[email protected]>
- Loading branch information
1 parent
b83df91
commit 9f0d2ae
Showing
1 changed file
with
57 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# DeepSpeed Team | ||
|
||
import deepspeed | ||
import torch | ||
from unit.common import DistributedTest, preferred_dtype | ||
from unit.simple_model import SimpleModel, random_dataloader | ||
|
||
|
||
class TestZ3MultipleModelCall(DistributedTest): | ||
world_size = 1 | ||
|
||
def test_z3_multiple_model_call(self): | ||
config_dict = { | ||
"train_micro_batch_size_per_gpu": 1, | ||
"gradient_accumulation_steps": 1, | ||
"steps_per_print": 1, | ||
"zero_optimization": { | ||
"stage": 3 | ||
}, | ||
"fp16": { | ||
"enabled": True, | ||
"initial_scale_power": 8 | ||
}, | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 1e-3 | ||
} | ||
}, | ||
} | ||
if preferred_dtype() is torch.float16: | ||
config_dict["fp16"] = {"enabled": True, "initial_scale_power": 8} | ||
elif preferred_dtype() is torch.bfloat16: | ||
config_dict["bf16"] = {"enabled": True} | ||
hidden_dim, nlayers = 2048, 3 | ||
model = SimpleModel(hidden_dim=hidden_dim, nlayers=nlayers) | ||
model_engine, _, _, _ = deepspeed.initialize(config=config_dict, | ||
model=model, | ||
model_parameters=model.parameters()) | ||
data_loader = iter( | ||
random_dataloader(model=model_engine, total_samples=10, hidden_dim=hidden_dim, device=model_engine.device)) | ||
|
||
for n, batch in enumerate(data_loader): | ||
loss1 = model_engine(batch[0], batch[1]) | ||
with torch.no_grad(): | ||
loss2 = model_engine(batch[0], batch[1]) | ||
loss = loss1 + loss2 | ||
model_engine.backward(loss) | ||
for name, submodule in model_engine.module.linears._modules.items(): | ||
assert hasattr(submodule, "ds_grads_remaining"), \ | ||
f"linears.{name} does not have variable ds_grads_remaining" | ||
assert submodule.ds_grads_remaining == 0, \ | ||
f"ds_grads_remaining of linears.{name} is not 0 ({submodule.ds_grads_remaining})" | ||
model_engine.step() |