Skip to content

A faster and more memory-efficient implementation of zero_to_fp32 #3404

A faster and more memory-efficient implementation of zero_to_fp32

A faster and more memory-efficient implementation of zero_to_fp32 #3404

name: cpu-torch-latest
on:
workflow_dispatch:
pull_request:
paths-ignore:
- 'docs/**'
- 'blogs/**'
- 'deepspeed/inference/v2/**'
- 'tests/unit/inference/v2/**'
merge_group:
branches: [ master ]
schedule:
- cron: "0 0 * * *"
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
unit-tests:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- id: setup-venv
uses: ./.github/workflows/setup-venv
- name: Install system packages
run: |
sudo apt-get install -y numactl pdsh
- name: Install pytorch
run: |
pip install torch torchvision --index-url https://download.pytorch.org/whl/cpu
python -c "import torch; print('torch:', torch.__version__, torch)"
python -c "import torch; print('CUDA available:', torch.cuda.is_available())"
- name: Install deepspeed
run: |
pip install .[dev,autotuning]
ds_report
- name: Python environment
run: |
pip list
- name: Unit tests
run: |
unset TORCH_CUDA_ARCH_LIST # only jit compile for current arch
cd tests
HF_HOME=/tmp/hf_home/ pytest $PYTEST_OPTS -n 4 unit/ --torch_ver="2.5"
HF_HOME=/tmp/hf_home/ pytest $PYTEST_OPTS -m 'sequential' unit/ --torch_ver="2.5"