Skip to content

Commit

Permalink
[torch.compile] Fuse RMSNorm with quant (vllm-project#9138)
Browse files Browse the repository at this point in the history
Signed-off-by: luka <[email protected]>
Co-authored-by: youkaichao <[email protected]>
Signed-off-by: Maxime Fournioux <[email protected]>
  • Loading branch information
2 people authored and mfournioux committed Nov 20, 2024
1 parent 0e13c6b commit 385ff71
Show file tree
Hide file tree
Showing 17 changed files with 1,335 additions and 368 deletions.
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,7 @@ set(VLLM_EXT_SRC
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/layernorm_quant_kernels.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
Expand Down
165 changes: 4 additions & 161 deletions csrc/layernorm_kernels.cu
Original file line number Diff line number Diff line change
@@ -1,21 +1,13 @@
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include "type_convert.cuh"
#include "dispatch_utils.h"

#include <torch/cuda.h>
#include <c10/cuda/CUDAGuard.h>

#include "dispatch_utils.h"
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cub/util_type.cuh>
#include <cub/cub.cuh>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
#include <hipcub/util_type.hpp>
#include <hipcub/hipcub.hpp>

using __nv_bfloat16 = __hip_bfloat16;
using __nv_bfloat162 = __hip_bfloat162;
#endif

namespace vllm {
Expand Down Expand Up @@ -51,155 +43,6 @@ __global__ void rms_norm_kernel(
}
}

/* Converter structs for the conversion from torch types to HIP/CUDA types,
and the associated type conversions within HIP/CUDA. These helpers need
to be implemented for now because the relevant type conversion
operators/constructors are not consistently implemented by HIP/CUDA, so
a generic conversion via type casts cannot be implemented.
Each struct should have the member static constexpr bool `exists`:
If false, the optimized kernel is not used for the corresponding torch type.
If true, the struct should be fully defined as shown in the examples below.
*/
template <typename torch_type>
struct _typeConvert {
static constexpr bool exists = false;
};

#if defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >= 12000))
// CUDA < 12.0 runs into issues with packed type conversion
template <>
struct _typeConvert<c10::Half> {
static constexpr bool exists = true;
using hip_type = __half;
using packed_hip_type = __half2;

__device__ static inline float convert(hip_type x) { return __half2float(x); }
__device__ static inline float2 convert(packed_hip_type x) {
return __half22float2(x);
}
__device__ static inline hip_type convert(float x) {
return __float2half_rn(x);
}
__device__ static inline packed_hip_type convert(float2 x) {
return __float22half2_rn(x);
}
};

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
// CUDA_ARCH < 800 does not have BF16 support
// TODO: Add in ROCm support once public headers handle bf16 maturely
template <>
struct _typeConvert<c10::BFloat16> {
static constexpr bool exists = true;
using hip_type = __nv_bfloat16;
using packed_hip_type = __nv_bfloat162;

__device__ static inline float convert(hip_type x) {
return __bfloat162float(x);
}
__device__ static inline float2 convert(packed_hip_type x) {
return __bfloat1622float2(x);
}
__device__ static inline hip_type convert(float x) {
return __float2bfloat16(x);
}
__device__ static inline packed_hip_type convert(float2 x) {
return __float22bfloat162_rn(x);
}
};
#endif // defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#endif // defined(USE_ROCM) || (defined(CUDA_VERSION) && (CUDA_VERSION >=
// 12000))

/* Vector POD struct to generate vectorized and packed FP16/BF16 ops
for appropriate specializations of fused_add_rms_norm_kernel.
Only functions that are necessary in that kernel are implemented.
Alignment to 16 bytes is required to use 128-bit global memory ops.
*/
template <typename scalar_t, int width>
struct alignas(16) _f16Vec {
/* Not theoretically necessary that width is a power of 2 but should
almost always be the case for optimization purposes */
static_assert(width > 0 && (width & (width - 1)) == 0,
"Width is not a positive power of 2!");
using Converter = _typeConvert<scalar_t>;
using T1 = typename Converter::hip_type;
using T2 = typename Converter::packed_hip_type;
T1 data[width];

__device__ _f16Vec& operator+=(const _f16Vec<scalar_t, width>& other) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
T2 temp{data[i], data[i + 1]};
temp += T2{other.data[i], other.data[i + 1]};
data[i] = temp.x;
data[i + 1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) data[i] += other.data[i];
}
return *this;
}

__device__ _f16Vec& operator*=(const _f16Vec<scalar_t, width>& other) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
T2 temp{data[i], data[i + 1]};
temp *= T2{other.data[i], other.data[i + 1]};
data[i] = temp.x;
data[i + 1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) data[i] *= other.data[i];
}
return *this;
}

__device__ _f16Vec& operator*=(const float scale) {
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 temp_f = Converter::convert(T2{data[i], data[i + 1]});
temp_f.x *= scale;
temp_f.y *= scale;
T2 temp = Converter::convert(temp_f);
data[i] = temp.x;
data[i + 1] = temp.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) {
float temp = Converter::convert(data[i]) * scale;
data[i] = Converter::convert(temp);
}
}
return *this;
}

__device__ float sum_squares() const {
float result = 0.0f;
if constexpr (width % 2 == 0) {
#pragma unroll
for (int i = 0; i < width; i += 2) {
float2 z = Converter::convert(T2{data[i], data[i + 1]});
result += z.x * z.x + z.y * z.y;
}
} else {
#pragma unroll
for (int i = 0; i < width; ++i) {
float x = Converter::convert(data[i]);
result += x * x;
}
}
return result;
}
};

/* Function specialization in the case of FP16/BF16 tensors.
Additional optimizations we can make in this case are
packed and vectorized operations, which help with the
Expand Down
Loading

0 comments on commit 385ff71

Please sign in to comment.