-
Notifications
You must be signed in to change notification settings - Fork 12
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
m1721: backport new zstd from linux mainline #7
Open
urain39
wants to merge
17
commits into
meizucustoms:lineage-19.1
Choose a base branch
from
urain39:zstd-testing
base: lineage-19.1
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Now, Kbuild nicely handles composite objects to avoid multiple definition. Makefiles can simply add the same objects multiple times across composite objects. Signed-off-by: Masahiro Yamada <[email protected]>
In preparation to enabling -Wimplicit-fallthrough, mark switch cases where we are expecting to fall through. This patch fixes the following warnings: lib/zstd/bitstream.h:261:30: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/bitstream.h:262:30: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/bitstream.h:263:30: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/bitstream.h:264:30: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/bitstream.h:265:30: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/compress.c:3183:16: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/decompress.c:1770:18: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/decompress.c:2376:15: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/decompress.c:2404:15: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/decompress.c:2435:16: warning: this statement may fall through [-Wimplicit-fallthrough=] lib/zstd/huf_compress.c: In function ‘HUF_compress1X_usingCTable’: lib/zstd/huf_compress.c:535:5: warning: this statement may fall through [-Wimplicit-fallthrough=] if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 4 + 7) \ ^ lib/zstd/huf_compress.c:558:54: note: in expansion of macro ‘HUF_FLUSHBITS_2’ case 3: HUF_encodeSymbol(&bitC, ip[n + 2], CTable); HUF_FLUSHBITS_2(&bitC); ^~~~~~~~~~~~~~~ lib/zstd/huf_compress.c:559:2: note: here case 2: HUF_encodeSymbol(&bitC, ip[n + 1], CTable); HUF_FLUSHBITS_1(&bitC); ^~~~ lib/zstd/huf_compress.c:531:5: warning: this statement may fall through [-Wimplicit-fallthrough=] if (sizeof((stream)->bitContainer) * 8 < HUF_TABLELOG_MAX * 2 + 7) \ ^ lib/zstd/huf_compress.c:559:54: note: in expansion of macro ‘HUF_FLUSHBITS_1’ case 2: HUF_encodeSymbol(&bitC, ip[n + 1], CTable); HUF_FLUSHBITS_1(&bitC); ^~~~~~~~~~~~~~~ lib/zstd/huf_compress.c:560:2: note: here case 1: HUF_encodeSymbol(&bitC, ip[n + 0], CTable); HUF_FLUSHBITS(&bitC); ^~~~ AR lib/zstd//built-in.a Warning level 3 was used: -Wimplicit-fallthrough=3 This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough. Reviewed-by: Kees Cook <[email protected]> Signed-off-by: Gustavo A. R. Silva <[email protected]>
Currently, compiler_types.h #defines __inline as inline (and further #defines inline to automatically attach some attributes), so this does not change functionality. It serves as preparation for removing the #define of __inline. While at it, also remove the __attribute__((unused)) - it's already included in the definition of the inline macro, and "open-coded" __attribute__(()) should be avoided. Since commit a95b37e20db9 (kbuild: get <linux/compiler_types.h> out of <linux/kconfig.h>), compiler_types.h is automatically included by all kernel C code - i.e., the definition of inline including the unused attribute is guaranteed to be in effect whenever ZSTD_STATIC is expanded. Signed-off-by: Rasmus Villemoes <[email protected]> Signed-off-by: Miguel Ojeda <[email protected]>
These changes are necessary to get the build to work in the preboot environment, and to get reasonable performance: - Remove a double definition of the CHECK_F macro when the zstd library is amalgamated. - Switch ZSTD_copy8() to __builtin_memcpy(), because in the preboot environment on x86 gcc can't inline `memcpy()` otherwise. - Limit the gcc hack in ZSTD_wildcopy() to the broken gcc version. See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81388. ZSTD_copy8() and ZSTD_wildcopy() are in the core of the zstd hot loop. So outlining these calls to memcpy(), and having an extra branch are very detrimental to performance. Signed-off-by: Nick Terrell <[email protected]> Signed-off-by: Ingo Molnar <[email protected]> Tested-by: Sedat Dilek <[email protected]> Reviewed-by: Kees Cook <[email protected]> Link: https://lore.kernel.org/r/[email protected]
- Add unzstd() and the zstd decompress interface. - Add zstd support to decompress_method(). The decompress_method() and unzstd() functions are used to decompress the initramfs and the initrd. The __decompress() function is used in the preboot environment to decompress a zstd compressed kernel. The zstd decompression function allows the input and output buffers to overlap because that is used by x86 kernel decompression. Signed-off-by: Nick Terrell <[email protected]> Signed-off-by: Ingo Molnar <[email protected]> Tested-by: Sedat Dilek <[email protected]> Reviewed-by: Kees Cook <[email protected]> Link: https://lore.kernel.org/r/[email protected]
The zstd decompression code, as it is right now, will most likely fail on 32-bit systems, as the default output buffer size causes the buffer's end address to overflow. Address this issue by setting a sane default to the default output size, with a value that won't overflow the buffer's end address. Signed-off-by: Paul Cercueil <[email protected]> Reviewed-by: Nick Terrell <[email protected]> Signed-off-by: Thomas Bogendoerfer <[email protected]>
These constants are really used internally by zstd and including linux/zstd.h into users results in the following warnings: In file included from fs/btrfs/zstd.c:19: ./include/linux/zstd.h:798:21: warning: ‘ZSTD_skippableHeaderSize’ defined but not used [-Wunused-const-variable=] 798 | static const size_t ZSTD_skippableHeaderSize = 8; | ^~~~~~~~~~~~~~~~~~~~~~~~ ./include/linux/zstd.h:796:21: warning: ‘ZSTD_frameHeaderSize_max’ defined but not used [-Wunused-const-variable=] 796 | static const size_t ZSTD_frameHeaderSize_max = ZSTD_FRAMEHEADERSIZE_MAX; | ^~~~~~~~~~~~~~~~~~~~~~~~ ./include/linux/zstd.h:795:21: warning: ‘ZSTD_frameHeaderSize_min’ defined but not used [-Wunused-const-variable=] 795 | static const size_t ZSTD_frameHeaderSize_min = ZSTD_FRAMEHEADERSIZE_MIN; | ^~~~~~~~~~~~~~~~~~~~~~~~ ./include/linux/zstd.h:794:21: warning: ‘ZSTD_frameHeaderSize_prefix’ defined but not used [-Wunused-const-variable=] 794 | static const size_t ZSTD_frameHeaderSize_prefix = 5; So fix those warnings by turning the constants into defines. Reviewed-by: Nick Terrell <[email protected]> Signed-off-by: Nikolay Borisov <[email protected]> Reviewed-by: David Sterba <[email protected]> Signed-off-by: David Sterba <[email protected]>
This patch: - Moves `include/linux/zstd.h` -> `include/linux/zstd_lib.h` - Updates modified zstd headers to yearless copyright - Adds a new API in `include/linux/zstd.h` that is functionally equivalent to the in-use subset of the current API. Functions are renamed to avoid symbol collisions with zstd, to make it clear it is not the upstream zstd API, and to follow the kernel style guide. - Updates all callers to use the new API. There are no functional changes in this patch. Since there are no functional change, I felt it was okay to update all the callers in a single patch. Once the API is approved, the callers are mechanically changed. This patch is preparing for the 3rd patch in this series, which updates zstd to version 1.4.10. Since the upstream zstd API is no longer exposed to callers, the update can happen transparently. Signed-off-by: Nick Terrell <[email protected]> Tested By: Paul Jones <[email protected]> Tested-by: Oleksandr Natalenko <[email protected]> Tested-by: Sedat Dilek <[email protected]> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <[email protected]>
Adds decompress_sources.h which includes every .c file necessary for zstd decompression. This is used in decompress_unzstd.c so the internal structure of the library isn't exposed. This allows us to upgrade the zstd library version without modifying any callers. Instead we just need to update decompress_sources.h. Signed-off-by: Nick Terrell <[email protected]> Tested By: Paul Jones <[email protected]> Tested-by: Oleksandr Natalenko <[email protected]> Tested-by: Sedat Dilek <[email protected]> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <[email protected]>
Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] facebook/zstd@20821a4 [1] terrelln/linux@e0fa481 Signed-off-by: Nick Terrell <[email protected]> Tested By: Paul Jones <[email protected]> Tested-by: Oleksandr Natalenko <[email protected]> Tested-by: Sedat Dilek <[email protected]> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <[email protected]>
A new warning in clang warns that there is an instance where boolean expressions are being used with bitwise operators instead of logical ones: lib/zstd/decompress/huf_decompress.c:890:25: warning: use of bitwise '&' with boolean operands [-Wbitwise-instead-of-logical] (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ zstd does this frequently to help with performance, as logical operators have branches whereas bitwise ones do not. To fix this warning in other cases, the expressions were placed on separate lines with the '&=' operator; however, this particular instance was moved away from that so that it could be surrounded by LIKELY, which is a macro for __builtin_expect(), to help with a performance regression, according to upstream zstd pull #1973. Aside from switching to logical operators, which is likely undesirable in this instance, or disabling the warning outright, the solution is casting one of the expressions to an integer type to make it clear to clang that the author knows what they are doing. Add a cast to U32 to silence the warning. The first U32 cast is to silence an instance of -Wshorten-64-to-32 because __builtin_expect() returns long so it cannot be moved. Link: ClangBuiltLinux/linux#1486 Link: facebook/zstd#1973 Reported-by: Nick Desaulniers <[email protected]> Signed-off-by: Nathan Chancellor <[email protected]> Signed-off-by: Nick Terrell <[email protected]>
The variable `litLengthSum` is only used by an `assert()`, so when asserts are disabled the compiler doesn't see any usage and warns. This issue is already fixed upstream by PR #2838 [0]. It was reported by the Kernel test robot in [1]. Another approach would be to change zstd's disabled `assert()` definition to use the argument in a disabled branch, instead of ignoring the argument. I've avoided this approach because there are some small changes necessary to get zstd to build, and I would want to thoroughly re-test for performance, since that is slightly changing the code in every function in zstd. It seems like a trivial change, but some functions are pretty sensitive to small changes. However, I think it is a valid approach that I would like to see upstream take, so I've opened Issue #2868 to attempt this upstream. Lastly, I've chosen not to use __maybe_unused because all code in lib/zstd/ must eventually be upstreamed. Upstream zstd can't use __maybe_unused because it isn't portable across all compilers. [0] facebook/zstd#2838 [1] https://lore.kernel.org/linux-mm/[email protected]/T/ [2] facebook/zstd#2868 Link: https://lore.kernel.org/r/[email protected]/ Link: https://lore.kernel.org/r/[email protected]/ Reported-by: kernel test robot <[email protected]> Signed-off-by: Nick Terrell <[email protected]>
`zstd_opt.c` contains the match finder for the highest compression levels. These levels are already very slow, and are unlikely to be used in the kernel. If they are used, they shouldn't be used in latency sensitive workloads, so slowing them down shouldn't be a big deal. This saves 188 KB of the 288 KB regression reported by Geert Uytterhoeven [0]. I've also opened an issue upstream [1] so that we can properly tackle the code size issue in `zstd_opt.c` for all users, and can hopefully remove this hack in the next zstd version we import. Bloat-o-meter output on x86-64: ``` > ../scripts/bloat-o-meter vmlinux.old vmlinux add/remove: 6/5 grow/shrink: 1/9 up/down: 16673/-209939 (-193266) Function old new delta ZSTD_compressBlock_opt_generic.constprop - 7559 +7559 ZSTD_insertBtAndGetAllMatches - 6304 +6304 ZSTD_insertBt1 - 1731 +1731 ZSTD_storeSeq - 693 +693 ZSTD_BtGetAllMatches - 255 +255 ZSTD_updateRep - 128 +128 ZSTD_updateTree 96 99 +3 ZSTD_insertAndFindFirstIndexHash3 81 - -81 ZSTD_setBasePrices.constprop 98 - -98 ZSTD_litLengthPrice.constprop 138 - -138 ZSTD_count 362 181 -181 ZSTD_count_2segments 1407 938 -469 ZSTD_insertBt1.constprop 2689 - -2689 ZSTD_compressBlock_btultra2 19990 423 -19567 ZSTD_compressBlock_btultra 19633 15 -19618 ZSTD_initStats_ultra 19825 - -19825 ZSTD_compressBlock_btopt 20374 12 -20362 ZSTD_compressBlock_btopt_extDict 29984 12 -29972 ZSTD_compressBlock_btultra_extDict 30718 15 -30703 ZSTD_compressBlock_btopt_dictMatchState 32689 12 -32677 ZSTD_compressBlock_btultra_dictMatchState 33574 15 -33559 Total: Before=6611828, After=6418562, chg -2.92% ``` [0] https://lkml.org/lkml/2021/11/14/189 [1] facebook/zstd#2862 Link: https://lore.kernel.org/r/[email protected]/ Link: https://lore.kernel.org/r/[email protected]/ Reported-by: Geert Uytterhoeven <[email protected]> Tested-by: Geert Uytterhoeven <[email protected]> Reviewed-by: Geert Uytterhoeven <[email protected]> Signed-off-by: Nick Terrell <[email protected]>
After the update to zstd-1.4.10 passing -O3 is no longer necessary to get good performance from zstd. Using the default optimization level -O2 is sufficient to get good performance. I've measured no significant change to compression speed, and a ~1% decompression speed loss, which is acceptable. This fixes the reported parisc -Wframe-larger-than=1536 errors [0]. The gcc-8-hppa-linux-gnu compiler performed very poorly with -O3, generating stacks that are ~3KB. With -O2 these same functions generate stacks in the < 100B, completely fixing the problem. Function size deltas are listed below: ZSTD_compressBlock_fast_extDict_generic: 3800 -> 68 ZSTD_compressBlock_fast: 2216 -> 40 ZSTD_compressBlock_fast_dictMatchState: 1848 -> 64 ZSTD_compressBlock_doubleFast_extDict_generic: 3744 -> 76 ZSTD_fillDoubleHashTable: 3252 -> 0 ZSTD_compressBlock_doubleFast: 5856 -> 36 ZSTD_compressBlock_doubleFast_dictMatchState: 5380 -> 84 ZSTD_copmressBlock_lazy2: 2420 -> 72 Additionally, this improves the reported code bloat [1]. With gcc-11 bloat-o-meter shows an 80KB code size improvement: ``` > ../scripts/bloat-o-meter vmlinux.old vmlinux add/remove: 31/8 grow/shrink: 24/155 up/down: 25734/-107924 (-82190) Total: Before=6418562, After=6336372, chg -1.28% ``` Compared to before the zstd-1.4.10 update we see a total code size regression of 105KB, down from 374KB at v5.16-rc1: ``` > ../scripts/bloat-o-meter vmlinux.old vmlinux add/remove: 292/62 grow/shrink: 56/88 up/down: 235009/-127487 (107522) Total: Before=6228850, After=6336372, chg +1.73% ``` [0] https://lkml.org/lkml/2021/11/15/710 [1] https://lkml.org/lkml/2021/11/14/189 Link: https://lore.kernel.org/r/[email protected]/ Link: https://lore.kernel.org/r/[email protected]/ Reported-by: Geert Uytterhoeven <[email protected]> Tested-by: Geert Uytterhoeven <[email protected]> Reviewed-by: Geert Uytterhoeven <[email protected]> Signed-off-by: Nick Terrell <[email protected]>
Level 1 is faster than level 3, and the compression ratio is very similar to level 3.
urain39
changed the title
backport new zstd kernel module (tested)
m1721: backport new zstd from linux mainline
Jul 27, 2022
tdrkDev
pushed a commit
that referenced
this pull request
Oct 9, 2022
commit 38c9c22a85aeed28d0831f230136e9cf6fa2ed44 upstream. Syzkaller reported use-after-free bug as follows: ================================================================== BUG: KASAN: use-after-free in ntfs_ucsncmp+0x123/0x130 Read of size 2 at addr ffff8880751acee8 by task a.out/879 CPU: 7 PID: 879 Comm: a.out Not tainted 5.19.0-rc4-next-20220630-00001-gcc5218c8bd2c-dirty #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x1c0/0x2b0 print_address_description.constprop.0.cold+0xd4/0x484 print_report.cold+0x55/0x232 kasan_report+0xbf/0xf0 ntfs_ucsncmp+0x123/0x130 ntfs_are_names_equal.cold+0x2b/0x41 ntfs_attr_find+0x43b/0xb90 ntfs_attr_lookup+0x16d/0x1e0 ntfs_read_locked_attr_inode+0x4aa/0x2360 ntfs_attr_iget+0x1af/0x220 ntfs_read_locked_inode+0x246c/0x5120 ntfs_iget+0x132/0x180 load_system_files+0x1cc6/0x3480 ntfs_fill_super+0xa66/0x1cf0 mount_bdev+0x38d/0x460 legacy_get_tree+0x10d/0x220 vfs_get_tree+0x93/0x300 do_new_mount+0x2da/0x6d0 path_mount+0x496/0x19d0 __x64_sys_mount+0x284/0x300 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f3f2118d9ea Code: 48 8b 0d a9 f4 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 76 f4 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffc269deac8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f3f2118d9ea RDX: 0000000020000000 RSI: 0000000020000100 RDI: 00007ffc269dec00 RBP: 00007ffc269dec80 R08: 00007ffc269deb00 R09: 00007ffc269dec44 R10: 0000000000000000 R11: 0000000000000202 R12: 000055f81ab1d220 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> The buggy address belongs to the physical page: page:0000000085430378 refcount:1 mapcount:1 mapping:0000000000000000 index:0x555c6a81d pfn:0x751ac memcg:ffff888101f7e180 anon flags: 0xfffffc00a0014(uptodate|lru|mappedtodisk|swapbacked|node=0|zone=1|lastcpupid=0x1fffff) raw: 000fffffc00a0014 ffffea0001bf2988 ffffea0001de2448 ffff88801712e201 raw: 0000000555c6a81d 0000000000000000 0000000100000000 ffff888101f7e180 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880751acd80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8880751ace00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8880751ace80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ^ ffff8880751acf00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8880751acf80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== The reason is that struct ATTR_RECORD->name_offset is 6485, end address of name string is out of bounds. Fix this by adding sanity check on end address of attribute name string. [[email protected]: coding-style cleanups] [[email protected]: cleanup suggested by Hawkins Jiawei] Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: ChenXiaoSong <[email protected]> Signed-off-by: Hawkins Jiawei <[email protected]> Cc: Anton Altaparmakov <[email protected]> Cc: ChenXiaoSong <[email protected]> Cc: Yongqiang Liu <[email protected]> Cc: Zhang Yi <[email protected]> Cc: Zhang Xiaoxu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
tdrkDev
pushed a commit
that referenced
this pull request
Oct 9, 2022
…loc() commit d29f59051d3a07b81281b2df2b8c9dfe4716067f upstream. The voice allocator sometimes begins allocating from near the end of the array and then wraps around, however snd_emu10k1_pcm_channel_alloc() accesses the newly allocated voices as if it never wrapped around. This results in out of bounds access if the first voice has a high enough index so that first_voice + requested_voice_count > NUM_G (64). The more voices are requested, the more likely it is for this to occur. This was initially discovered using PipeWire, however it can be reproduced by calling aplay multiple times with 16 channels: aplay -r 48000 -D plughw:CARD=Live,DEV=3 -c 16 /dev/zero UBSAN: array-index-out-of-bounds in sound/pci/emu10k1/emupcm.c:127:40 index 65 is out of range for type 'snd_emu10k1_voice [64]' CPU: 1 PID: 31977 Comm: aplay Tainted: G W IOE 6.0.0-rc2-emu10k1+ #7 Hardware name: ASUSTEK COMPUTER INC P5W DH Deluxe/P5W DH Deluxe, BIOS 3002 07/22/2010 Call Trace: <TASK> dump_stack_lvl+0x49/0x63 dump_stack+0x10/0x16 ubsan_epilogue+0x9/0x3f __ubsan_handle_out_of_bounds.cold+0x44/0x49 snd_emu10k1_playback_hw_params+0x3bc/0x420 [snd_emu10k1] snd_pcm_hw_params+0x29f/0x600 [snd_pcm] snd_pcm_common_ioctl+0x188/0x1410 [snd_pcm] ? exit_to_user_mode_prepare+0x35/0x170 ? do_syscall_64+0x69/0x90 ? syscall_exit_to_user_mode+0x26/0x50 ? do_syscall_64+0x69/0x90 ? exit_to_user_mode_prepare+0x35/0x170 snd_pcm_ioctl+0x27/0x40 [snd_pcm] __x64_sys_ioctl+0x95/0xd0 do_syscall_64+0x5c/0x90 ? do_syscall_64+0x69/0x90 ? do_syscall_64+0x69/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Signed-off-by: Tasos Sahanidis <[email protected]> Cc: <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Takashi Iwai <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This backport is only for zRAM/zSwap, all fs related changes have been removed.