Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TIR] Pass to hoist allocations from tvm main to function signature #4

Open
wants to merge 5 commits into
base: relax-aot
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions python/tvm/tir/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -387,6 +387,17 @@ def LowerCustomDatatypes():
return _ffi_api.LowerCustomDatatypes() # type: ignore


def HoistWorkspaceAllocation():
"""Hoist workspace Buffer allocation into function signature

Returns
-------
fpass : tvm.transform.Pass
The result pass
"""
return HoistWorkspaceAllocation() # type: ignore


def MakePackedAPI():
"""Transform the PrimFuncs in the module to a packed func API.

Expand Down
127 changes: 127 additions & 0 deletions src/tir/transforms/hoist_buffer_allocation.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file tir/transforms/hoist_buffer_allocation.cc
* \brief Pass for hoisting buffer allocation into function signature
*/

#include <tvm/runtime/registry.h>
#include <tvm/target/target.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <utility>

#include "../../target/datatype/registry.h"
#include "ir_utils.h"

namespace tvm {
namespace tir {

class HoistWorkspaceAlloc : public StmtExprMutator {
public:
explicit HoistWorkspaceAlloc(IRModule mod) : mod_(std::move(mod)) {}

IRModule operator()() {
auto main_func_gv = mod_->GetGlobalVar(runtime::symbol::tvm_module_main);
auto base_func = mod_->Lookup(main_func_gv);
auto main_func = runtime::Downcast<PrimFunc>(base_func);

Stmt new_body = VisitStmt(main_func->body);

auto input_vars_optional = main_func->GetAttr<Array<Var>>("input_vars");
ICHECK(input_vars_optional.defined()) << "Input vars are undefined";
auto output_vars_optional = main_func->GetAttr<Array<Var>>("output_vars");
ICHECK(output_vars_optional.defined()) << "Ouput vars are undefined";

// 1. Insert the input vars in the new_buffer_map
Map<Var, Buffer> new_buffer_map;
for (auto var : input_vars_optional.value()) {
auto buffer = main_func->buffer_map.Get(var);
if (buffer.defined()) {
new_buffer_map.Set(var, buffer.value());
}
}

// 2. Construct the new params of the function and insert the new values in the new_buffer_map
Array<Var> new_params = Array<Var>(input_vars_optional.value());
for (auto it : buffer_map_to_append) {
new_params.push_back(it.first);
new_buffer_map.Set(it.first, it.second);
}
new_params.insert(new_params.end(), output_vars_optional.value().begin(),
output_vars_optional.value().end());

// 3. Finish constructing the new_buffer_map by inserting the output vars.
for (auto var : output_vars_optional.value()) {
auto buffer = main_func->buffer_map.Get(var);
if (buffer.defined()) {
new_buffer_map.Set(var, buffer.value());
}
}

PrimFunc new_func = PrimFunc(new_params, new_body, main_func->ret_type, new_buffer_map,
main_func->attrs, main_func->span);

mod_->Update(main_func_gv, new_func);
return mod_;
}

private:
Stmt VisitStmt_(const AllocateNode* op) final {
// Remove the allocate node if the storage scope is defined
String storage_scope = GetPtrStorageScope(op->buffer_var);
if (storage_scope.defined() && !storage_scope.empty()) {
return VisitStmt(op->body);
}

return VisitStmt_(op);
}

Stmt VisitStmt_(const DeclBufferNode* op) final {
// Remove buffer decl node if it has a valid storage scope and register the
// <Var, Buffer> binding in the buffer_map_to_append.
String storage_scope = GetPtrStorageScope(op->buffer->data);
if (storage_scope.defined() && !storage_scope.empty()) {
buffer_map_to_append.Set(op->buffer->data, op->buffer);
return VisitStmt(op->body);
}
return VisitStmt_(op);
}

IRModule mod_;
Map<tir::Var, Buffer> buffer_map_to_append;
};

namespace transform {

Pass HoistWorkspaceAllocation() {
auto pass_func = [=](IRModule m, tvm::transform::PassContext ctx) {
return runtime::Downcast<IRModule>(tvm::tir::HoistWorkspaceAlloc(m)());
};
return tvm::transform::CreateModulePass(pass_func, 0, "tir.HoistWorkspaceAllocation", {});
}

TVM_REGISTER_GLOBAL("tir.transform.HoistWorkspaceAllocation").set_body_typed(HoistWorkspaceAllocation);

} // namespace transform

} // namespace tir
} // namespace tvm
109 changes: 109 additions & 0 deletions tests/python/unittest/test_tir_transform_hoist_alloc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import sys

import tvm
from tvm.script import tir as T

# fmt: off
@tvm.script.ir_module
class SimpleGraph:
@T.prim_func
def __tvm_main__(a: T.handle, output: T.handle):
# function attr dict
T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target(
{"kind": "llvm", "tag": "", "keys": ["cpu"]}), "input_vars": [a], "output_vars": [output]})
a_buffer = T.match_buffer(a, [T.int64(5), T.int64(7)], dtype="float32", align=16)
output_buffer = T.match_buffer(output, [T.int64(5), T.int64(7)], dtype="float32", align=16)
# body
sid_0 = T.decl_buffer([140], dtype="uint8", strides=[1], scope="global.workspace", align=16)
tid_0: T.Ptr[T.float32, "global.workspace"] = T.address_of(sid_0[0], dtype="handle")


@tvm.script.ir_module
class PostHoistGraph:
@T.prim_func
def __tvm_main__(a: T.handle, sid_0_1: T.Ptr[T.uint8], output: T.handle):
# function attr dict
T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]}), "input_vars": [a], "output_vars": [output]})
a_buffer = T.match_buffer(a, [T.int64(5), T.int64(7)], dtype="float32", align=16)
output_buffer = T.match_buffer(output, [T.int64(5), T.int64(7)], dtype="float32", align=16)
# body
sid_0 = T.match_buffer(sid_0_1, [140], dtype="uint8", strides=[1], elem_offset=0, align=16)
tid_0: T.Ptr[T.float32, "global.workspace"] = T.address_of(sid_0[0], dtype="handle")
# fmt: on


def test_simple_graph_one_pool():
tir_mod = SimpleGraph

tir_post_hoist = tvm.tir.transform.HoistWorkspaceAllocation()(tir_mod)

expected_mod = PostHoistGraph

tvm.ir.structural_equal(tir_post_hoist, expected_mod)



# fmt: off
@tvm.script.ir_module
class SimpleGraphMultiplePools:
@T.prim_func
def __tvm_main__(a: T.handle, b: T.handle, output: T.handle):
# function attr dict
T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target(
{"kind": "llvm", "tag": "", "keys": ["cpu"]}), "input_vars": [a, b], "output_vars": [output]})
a_buffer = T.match_buffer(a, [T.int64(5), T.int64(7)], dtype="float32", align=16)
b_buffer = T.match_buffer(b, [T.int64(5), T.int64(7)], dtype="float32", align=16)
output_buffer = T.match_buffer(output, [T.int64(5), T.int64(7)], dtype="float32", align=16)
# body
sid_0 = T.decl_buffer([140], dtype="uint8", strides=[1], scope="global.workspace", align=16)
sid_1 = T.decl_buffer([256], dtype="uint8", strides=[1], scope="vtcm.workspace", align=16)
tid_0: T.Ptr[T.float32, "global.workspace"] = T.address_of(sid_0[0], dtype="handle")
tid_1: T.Ptr[T.float32, "vtcm.workspace"] = T.address_of(sid_1[16], dtype="handle")


@tvm.script.ir_module
class PostHoistGraphMultiplePools:
@T.prim_func
def __tvm_main__(a: T.handle, b: T.handle, sid_0_1: T.Ptr[T.uint8], sid_1_1: T.Ptr[T.uint8], output: T.handle):
# function attr dict
T.func_attr({"global_symbol": "test_mod___tvm_main__", "runner_function": True, "target": T.target({"kind":"llvm", "tag":"", "keys":["cpu"]}), "input_vars": [a, b], "output_vars": [output]})
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can we add another function attr to indicate workspace vars?

a_buffer = T.match_buffer(a, [T.int64(5), T.int64(7)], dtype="float32", align=16)
b_buffer = T.match_buffer(b, [T.int64(5), T.int64(7)], dtype="float32", align=16)
output_buffer = T.match_buffer(output, [T.int64(5), T.int64(7)], dtype="float32", align=16)
# body
sid_0 = T.match_buffer(sid_0_1, [140], dtype="uint8", strides=[1], elem_offset=0, align=16)
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

we should keep the storage_scope set on these

sid_1 = T.match_buffer(sid_1_1, [256], dtype="uint8", strides=[1], elem_offset=0, align=16)
tid_0: T.Ptr[T.float32, "global.workspace"] = T.address_of(sid_0[0], dtype="handle")
tid_1: T.Ptr[T.float32, "vtcm.workspace"] = T.address_of(sid_1[16], dtype="handle")
# fmt: on


def test_simple_graph_multiple_pools():
tir_mod = SimpleGraphMultiplePools

tir_post_hoist = tvm.tir.transform.HoistWorkspaceAllocation()(tir_mod)

expected_mod = PostHoistGraphMultiplePools

tvm.ir.structural_equal(tir_post_hoist, expected_mod)


if __name__ == "__main__":
pytest.main([__file__] + sys.argv[1:])