Awesome evo_science created by maycuatroi
pip install evo-science
model = LinearRegressionModel()
x = FeatureSet(features=[PClass, Sex, Age, SibSp, Parch, Fare])
y = FeatureSet(features=[Survived])
(x + y).build(
csv_path="https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv"
)
model.fit(x=x, y=y)
model.evaluate(x=x, y=y, metrics=[Slope, ErrorStd])
model.calculate_coefficients(x=x)
The library includes a comprehensive implementation of YOLO (You Only Look Once) object detection models, including YOLOv8. The implementation features:
- Full YOLOv8 architecture with backbone, neck (FPN), and detection head
- Distributed training support
- Real-time object detection with webcam
- Model profiling and EMA (Exponential Moving Average) support
- Custom loss functions including DFL (Distribution Focal Loss)
from evo_science.packages.yolo.yolo_v8 import YoloV8
# Initialize YOLOv8-nano model
model = YoloV8.yolo_v8_n(num_classes=80) # 80 classes for COCO dataset
# For training
from evo_science.packages.yolo.modules.trainer import Trainer, TrainerConfig
config = TrainerConfig(
data_dir="path/to/coco",
batch_size=32,
epochs=300,
input_size=640
)
trainer = Trainer(model, config)
trainer.train()
# For real-time detection using webcam
from evo_science.packages.yolo.modules.demo import demo
demo(input_size=640, model=model)
Read the CONTRIBUTING.md file.