Skip to content

Commit

Permalink
canonicity for free category with terminal objects
Browse files Browse the repository at this point in the history
  • Loading branch information
maxsnew committed May 29, 2024
1 parent ca1cf6b commit fb4f110
Showing 1 changed file with 27 additions and 11 deletions.
38 changes: 27 additions & 11 deletions Gluing/Terminal.agda
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.Properties as Disp
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Instances.Sets.Base
open import Cubical.Categories.Displayed.Instances.Sets.Properties
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Functors.Constant
Expand All @@ -48,6 +49,7 @@ open import Cubical.Categories.Presheaf.More
open import Cubical.Categories.Instances.Functors.More

open Category
open Section
-- t : ⊤ -> b
-- f : ⊤ -> b
-- d : ⊤ → ⊤
Expand Down Expand Up @@ -121,14 +123,28 @@ boolToExp = if_then [t] else [f]
n : FQ [ 𝟙 , [b] ] Bool
n exp = (sem ⟪ exp ⟫) _

-- Goal:
-- 1. show [t] ≠ [f]
-- 2. show ∀ e : ⊤ → b . e ≡ [t] + e ≡ [f]

-- canonicity : isEquiv boolToExp
-- canonicity = record { equiv-proof = λ exp → uniqueExists {!!} {!!} {!!} {!!} } where
-- pts : Functor FQ (SET ℓ-zero)
-- pts = FQ [ 𝟙 ,-]

-- Canonicalize : Section pts (SETᴰ _ _)
-- Canonicalize = {!Free.elimLocal!}
canonicity : e (e ≡ [t]) ⊎ (e ≡ [f])
canonicity = λ exp fixup exp (Canonicalize .F-homᴰ exp _ _) where
pts = FQ [ 𝟙 ,-]

Canonicalize : Section pts (SETᴰ _ _)
Canonicalize = elimLocal _ _ _ _
(VerticalTerminalsSETᴰ _)
(λ { e _ Empty.⊥* , isProp→isSet isProp⊥*
; b exp
((exp ≡ [t]) ⊎ (exp ≡ [f]))
, isSet⊎ (isProp→isSet (isSetHom FQ _ _))
(isProp→isSet (isSetHom FQ _ _))
})
λ { f λ ⟨⟩ _ inr (cong₂ (seq' FQ) 𝟙η' refl ∙ FQ .⋆IdL _)
; t λ ⟨⟩ _ inl (cong₂ (seq' FQ) 𝟙η' refl ∙ FQ .⋆IdL _)
; d λ x _ tt* }

fixup : e
((FQ .id ⋆⟨ FQ ⟩ e) ≡ [t]) ⊎ ((FQ .id ⋆⟨ FQ ⟩ e) ≡ [f])
(e ≡ [t]) ⊎ (e ≡ [f])
fixup _ =
Sum.elim (λ hyp inl (sym (FQ .⋆IdL _) ∙ hyp))
(λ hyp inr (sym (FQ .⋆IdL _) ∙ hyp))

-- even better would be to show isEquiv boolToExp

0 comments on commit fb4f110

Please sign in to comment.