Skip to content

Commit

Permalink
yeah this is stuck. I'll come back when I understand actual HoTT better
Browse files Browse the repository at this point in the history
  • Loading branch information
hejohns committed Sep 3, 2023
1 parent aef464a commit 5252cf4
Showing 1 changed file with 3 additions and 2 deletions.
5 changes: 3 additions & 2 deletions Cubical/Categories/RezkCompletion/Constructionn.agda
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,6 @@ module RezkByHIT (C : Category ℓ ℓ') where
open import Cubical.Foundations.Isomorphism
open import Cubical.Categories.Category.Base
open Cubical.Categories.Category.isIso
open import Cubical.Foundations.Univalence
Ĉ₁ : Ĉ₀ Ĉ₀ Type _
Ĉ₁ (i a) (i b) = (C [ a , b ])
Ĉ₁ (i a) (j {b} {b'} e i') = isoToPath (iso iso→ iso⁻¹← (λ g iso→ (iso⁻¹← g) ≡⟨ refl ⟩ g ⋆⟨ C ⟩ e⁻¹← ⋆⟨ C ⟩ e→ ≡⟨ C .⋆Assoc g e⁻¹← e→ ⟩ g ⋆⟨ C ⟩ (e⁻¹← ⋆⟨ C ⟩ e→) ≡⟨ congS (λ eq g ⋆⟨ C ⟩ eq) (e .snd .sec) ⟩ g ⋆⟨ C ⟩ C .id ≡⟨ C .⋆IdR g ⟩ g ∎) (λ f iso⁻¹← (iso→ f) ≡⟨ refl ⟩ f ⋆⟨ C ⟩ e→ ⋆⟨ C ⟩ e⁻¹← ≡⟨ C .⋆Assoc f e→ e⁻¹← ⟩ f ⋆⟨ C ⟩ (e→ ⋆⟨ C ⟩ e⁻¹←) ≡⟨ congS (λ eq f ⋆⟨ C ⟩ eq) (e .snd .ret) ⟩ f ⋆⟨ C ⟩ C .id ≡⟨ C .⋆IdR f ⟩ f ∎ )) i'
Expand All @@ -92,12 +91,14 @@ module RezkByHIT (C : Category ℓ ℓ') where
iso→ f = f ⋆⟨ C ⟩ e→
iso⁻¹← : C [ a , b' ] C [ a , b ]
iso⁻¹← g = g ⋆⟨ C ⟩ e⁻¹←
Ĉ₁ (i a) (jid {b} i' i'') = ((isoToPath (iso iso→ iso⁻¹← (λ g iso→ (iso⁻¹← g) ≡⟨ refl ⟩ g ⋆⟨ C ⟩ C .id ⋆⟨ C ⟩ C .id ≡⟨ C .⋆Assoc g (C .id) (C .id) ⟩ g ⋆⟨ C ⟩ (C .id ⋆⟨ C ⟩ C .id) ≡⟨ congS (λ eq g ⋆⟨ C ⟩ eq) (C .⋆IdL (C .id)) ⟩ g ⋆⟨ C ⟩ C .id ≡⟨ C .⋆IdR g ⟩ g ∎ ) (λ f iso⁻¹← (iso→ f) ≡⟨ refl ⟩ f ⋆⟨ C ⟩ C .id ⋆⟨ C ⟩ C .id ≡⟨ C .⋆Assoc f (C .id) (C .id) ⟩ f ⋆⟨ C ⟩ (C .id ⋆⟨ C ⟩ C .id) ≡⟨ congS (λ eq f ⋆⟨ C ⟩ eq) (C .⋆IdL (C .id)) ⟩ f ⋆⟨ C ⟩ C .id ≡⟨ C .⋆IdR f ⟩ f ∎))) ≡⟨ {!!} ⟩ refl-hom ∎) i' i''
Ĉ₁ (i a) (jid {b} i' i'') = ( proof⋆id ≡⟨ J (λ y eq {! !}) {!!} proof⋆id ⟩ refl-hom ∎) i' i''
where
iso→ : C [ a , b ] C [ a , b ]
iso→ f = f ⋆⟨ C ⟩ (C .id)
iso⁻¹← : C [ a , b ] C [ a , b ]
iso⁻¹← g = g ⋆⟨ C ⟩ (C .id)
proof⋆id : C [ a , b ] ≡ C [ a , b ]
proof⋆id = isoToPath (iso iso→ iso⁻¹← (λ g iso→ (iso⁻¹← g) ≡⟨ refl ⟩ g ⋆⟨ C ⟩ C .id ⋆⟨ C ⟩ C .id ≡⟨ C .⋆Assoc g (C .id) (C .id) ⟩ g ⋆⟨ C ⟩ (C .id ⋆⟨ C ⟩ C .id) ≡⟨ congS (λ eq g ⋆⟨ C ⟩ eq) (C .⋆IdL (C .id)) ⟩ g ⋆⟨ C ⟩ C .id ≡⟨ C .⋆IdR g ⟩ g ∎ ) (λ f iso⁻¹← (iso→ f) ≡⟨ refl ⟩ f ⋆⟨ C ⟩ C .id ⋆⟨ C ⟩ C .id ≡⟨ C .⋆Assoc f (C .id) (C .id) ⟩ f ⋆⟨ C ⟩ (C .id ⋆⟨ C ⟩ C .id) ≡⟨ congS (λ eq f ⋆⟨ C ⟩ eq) (C .⋆IdL (C .id)) ⟩ f ⋆⟨ C ⟩ C .id ≡⟨ C .⋆IdR f ⟩ f ∎))
refl-hom : C [ a , b ] ≡ C [ a , b ]
refl-hom = refl
Ĉ₁ (i a) (jcomp {b} {c} {d} f g i' i'') = {!!}
Expand Down

0 comments on commit 5252cf4

Please sign in to comment.