Skip to content

Commit

Permalink
Prove Universal elements is prop for univalent cats (#40)
Browse files Browse the repository at this point in the history
* prove functoriality "commutes" with isoToPath

* prove univalence on SET behaves as expected

* Univalence of Opposite Cats, Cat of Elements, UnivElt is a Prop
  • Loading branch information
maxsnew authored Jul 19, 2023
1 parent d7a0db1 commit 4dc8429
Show file tree
Hide file tree
Showing 4 changed files with 134 additions and 0 deletions.
53 changes: 53 additions & 0 deletions Cubical/Categories/Constructions/Elements/More.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
{-# OPTIONS --safe #-}

-- The Category of Elements

module Cubical.Categories.Constructions.Elements.More where

open import Cubical.Categories.Category
open import Cubical.Categories.Isomorphism

open import Cubical.Categories.Instances.Sets
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Categories.Functor
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Categories.Constructions.Elements

import Cubical.Categories.Morphism as Morphism
import Cubical.Categories.Constructions.Slice as Slice

open import Cubical.Foundations.Isomorphism.More
open import Cubical.Categories.Isomorphism.More
open import Cubical.Categories.Instances.Sets.More

open Category
open Functor
open isUnivalent
module _ {ℓ ℓ'} {C : Category ℓ ℓ'} {ℓS}
(isUnivC : isUnivalent C) (F : Functor C (SET ℓS)) where
open Covariant {C = C}

isUnivalent∫ : isUnivalent (∫ F)
isUnivalent∫ .univ (c , f) (c' , f') = isIsoToIsEquiv
( isoToPath∫
, (λ f≅f' CatIso≡ _ _
(Σ≡Prop (λ _ (F ⟅ _ ⟆) .snd f' _)
(cong fst
(secEq (univEquiv isUnivC _ _) (F-Iso {F = ForgetElements F} f≅f')))))
, λ f≡f' ΣSquareSet (λ x snd (F ⟅ x ⟆))
( cong (CatIsoToPath isUnivC) (F-pathToIso {F = ForgetElements F} f≡f')
∙ retEq (univEquiv isUnivC _ _) (cong fst f≡f'))) where

isoToPath∫ : {c c' f f'}
CatIso (∫ F) (c , f) (c' , f')
(c , f) ≡ (c' , f')
isoToPath∫ {f = f} f≅f' = ΣPathP
( CatIsoToPath isUnivC (F-Iso {F = ForgetElements F} f≅f')
, toPathP ( (λ j transport (λ i fst
(F-isoToPath {F = F} isUnivC isUnivalentSET
(F-Iso {F = ForgetElements F} f≅f') (~ j) i)) f)
∙ univSetβ (F-Iso {F = F ∘F ForgetElements F} f≅f') f
∙ sym (f≅f' .fst .snd)))
14 changes: 14 additions & 0 deletions Cubical/Categories/Instances/Sets/More.agda
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,10 @@ module Cubical.Categories.Instances.Sets.More where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma

open import Cubical.Categories.Category
Expand All @@ -13,6 +16,8 @@ open import Cubical.Categories.Bifunctor.Redundant
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Constructions.BinProduct

open import Cubical.Foundations.Isomorphism.More

private
variable
ℓ ℓ' : Level
Expand All @@ -33,3 +38,12 @@ open Functor

×Sets : Functor ((SET ℓ) ×C (SET ℓ)) (SET ℓ)
×Sets = BifunctorToParFunctor ×SetsBif

module _ {A}{B} (f : CatIso (SET ℓ) A B) a where
open isUnivalent
univSetβ : transport (cong fst (CatIsoToPath isUnivalentSET f)) a
≡ f .fst a
univSetβ = (transportRefl _
∙ transportRefl _
∙ transportRefl _
∙ cong (f .fst) (transportRefl _ ∙ transportRefl _ ))
54 changes: 54 additions & 0 deletions Cubical/Categories/Isomorphism/More.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
{-# OPTIONS --safe #-}
module Cubical.Categories.Isomorphism.More where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base

open import Cubical.Categories.Isomorphism
open import Cubical.Foundations.Isomorphism.More

private
variable
ℓC ℓC' ℓD ℓD' : Level

open Category
open Functor
open isUnivalent
module _ {C : Category ℓC ℓC'} (isUnivC : isUnivalent C) where
op-Iso-pathToIso : {x y : C .ob} (p : x ≡ y)
op-Iso (pathToIso {C = C} p) ≡ pathToIso {C = C ^op} p
op-Iso-pathToIso =
J (λ y p op-Iso (pathToIso {C = C} p) ≡ pathToIso {C = C ^op} p)
(CatIso≡ _ _ refl)

op-Iso-pathToIso' : {x y : C .ob} (p : x ≡ y)
op-Iso (pathToIso {C = C ^op} p) ≡ pathToIso {C = C} p
op-Iso-pathToIso' =
J (λ y p op-Iso (pathToIso {C = C ^op} p) ≡ pathToIso {C = C} p)
(CatIso≡ _ _ refl)

isUnivalentOp : isUnivalent (C ^op)
isUnivalentOp .univ x y = isIsoToIsEquiv
( (λ f^op CatIsoToPath isUnivC (op-Iso f^op))
, (λ f^op CatIso≡ _ _
(cong fst
(cong op-Iso ((secEq (univEquiv isUnivC _ _) (op-Iso f^op))))))
, λ p cong (CatIsoToPath isUnivC) (op-Iso-pathToIso' p)
∙ retEq (univEquiv isUnivC _ _) p)

module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'}{F : Functor C D} where
module _ (isUnivC : isUnivalent C) (isUnivD : isUnivalent D) where
isoToPathC = CatIsoToPath isUnivC
isoToPathD = CatIsoToPath isUnivD

F-isoToPath : {x y : C .ob} (f : CatIso C x y)
isoToPathD (F-Iso {F = F} f) ≡ cong (F .F-ob) (isoToPathC f)
F-isoToPath f = isoFunInjective (equivToIso (univEquiv isUnivD _ _)) _ _
( secEq (univEquiv isUnivD _ _) _
∙ sym (sym (F-pathToIso {F = F} (isoToPathC f))
∙ cong (F-Iso {F = F}) (secEq (univEquiv isUnivC _ _) f)))
13 changes: 13 additions & 0 deletions Cubical/Categories/Presheaf/More.agda
Original file line number Diff line number Diff line change
Expand Up @@ -3,18 +3,23 @@ module Cubical.Categories.Presheaf.More where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure

open import Cubical.Categories.Category
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Constructions.Lift
open import Cubical.Categories.Constructions.Elements
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Representable

open import Cubical.Categories.Instances.Sets.More
open import Cubical.Categories.Isomorphism.More
open import Cubical.Categories.Constructions.Elements.More

open Category
open Functor
Expand Down Expand Up @@ -80,3 +85,11 @@ module UniversalElementNotation {ℓo}{ℓh}
( (∘ᴾAssoc C P _ _ _
∙ cong (action C P _) β)
∙ sym β)

module _ {C : Category ℓ ℓ'} (isUnivC : isUnivalent C) (P : Presheaf C ℓS) where
open Contravariant
isPropUniversalElement : isProp (UniversalElement C P)
isPropUniversalElement = isOfHLevelRetractFromIso 1
(invIso (TerminalElement≅UniversalElement C P))
(isPropTerminal (∫ᴾ_ {C = C} P)
(isUnivalentOp (isUnivalent∫ (isUnivalentOp isUnivC) P)))

0 comments on commit 4dc8429

Please sign in to comment.