Skip to content

Commit

Permalink
local eliminator and recursor for cartesian category
Browse files Browse the repository at this point in the history
  • Loading branch information
hejohns committed Jun 20, 2024
1 parent 564e32f commit 0849f9f
Show file tree
Hide file tree
Showing 11 changed files with 187 additions and 62 deletions.
176 changes: 136 additions & 40 deletions Cubical/Categories/Constructions/Free/CartesianCategory/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,14 @@ open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma hiding (_×_)
import Cubical.Data.Sigma as Σ

open import
Cubical.Categories.Constructions.Free.CartesianCategory.ProductQuiver
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.Limits.Cartesian.Base
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.BinProduct
open import Cubical.Categories.Limits.BinProduct.More

Expand All @@ -20,16 +23,21 @@ open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.Presheaf
open import Cubical.Categories.Displayed.Properties
open import Cubical.Categories.Displayed.Constructions.Reindex
open import Cubical.Categories.Displayed.Constructions.Reindex.Properties
open import Cubical.Categories.Displayed.Fibration.Base
open import Cubical.Categories.Displayed.Constructions.Weaken as Wk

private
variable
ℓQ ℓCᴰ ℓCᴰ' : Level
ℓQ ℓC ℓC' ℓCᴰ ℓCᴰ' ℓD ℓD' ℓDᴰ ℓDᴰ' : Level

module _ (Q : ×Quiver ℓQ) where
open ProductQuiver
open ×QuiverNotation Q
data Exp : Ob Ob Type ℓQ where
↑ₑ_ : t Exp (Dom t) (Cod t)
private module Q = ×QuiverNotation Q
data Exp : Q.Ob Q.Ob Type ℓQ where
↑ₑ_ : t Exp (Q.Dom t) (Q.Cod t)
idₑ : {Γ} Exp Γ Γ
_⋆ₑ_ : {Γ Γ' Γ''}(δ : Exp Γ Γ') (δ' : Exp Γ' Γ'') Exp Γ Γ''
⋆ₑIdL : {Γ Δ}(δ : Exp Γ Δ) idₑ ⋆ₑ δ ≡ δ
Expand All @@ -49,7 +57,7 @@ module _ (Q : ×Quiver ℓQ) where

open Category
|FreeCartesianCategory| : Category _ _
|FreeCartesianCategory| .ob = Ob
|FreeCartesianCategory| .ob = Q.Ob
|FreeCartesianCategory| .Hom[_,_] = Exp
|FreeCartesianCategory| .id = idₑ
|FreeCartesianCategory| ._⋆_ = _⋆ₑ_
Expand Down Expand Up @@ -82,51 +90,139 @@ module _ (Q : ×Quiver ℓQ) where
open LiftedBinProductsNotation bpᴰ
open UniversalElementᴰ
module _ (ı-ob : o Cᴰ.ob[ ↑ o ]) where
private
elim-F-ob : c Cᴰ.ob[ c ]
elim-F-ob (↑ o) = ı-ob o
elim-F-ob ⊤ = 𝟙ᴰ
elim-F-ob (c₁ × c₂) = elim-F-ob c₁ ×ᴰ elim-F-ob c₂
elim-F-ob : c Cᴰ.ob[ c ]
elim-F-ob (↑ o) = ı-ob o
elim-F-ob ⊤ = 𝟙ᴰ
elim-F-ob (c₁ × c₂) = elim-F-ob c₁ ×ᴰ elim-F-ob c₂

module _ (ı-hom : e
Cᴰ.Hom[ ↑ₑ e ][ elim-F-ob (Dom e) , elim-F-ob (Cod e) ])
Cᴰ.Hom[ ↑ₑ e ][ elim-F-ob (Q.Dom e) , elim-F-ob (Q.Cod e) ])
where
open Section
private
module R = HomᴰReasoning Cᴰ

elim-F-hom : {c c'} (f : |FreeCartesianCategory| [ c , c' ])
Cᴰ [ f ][ elim-F-ob c , elim-F-ob c' ]
elim-F-hom (↑ₑ t) = ı-hom t
elim-F-hom idₑ = Cᴰ.idᴰ
elim-F-hom (f ⋆ₑ g) = elim-F-hom f Cᴰ.⋆ᴰ elim-F-hom g
elim-F-hom (⋆ₑIdL f i) = Cᴰ.⋆IdLᴰ (elim-F-hom f) i
elim-F-hom (⋆ₑIdR f i) = Cᴰ.⋆IdRᴰ (elim-F-hom f) i
elim-F-hom (⋆ₑAssoc f g h i) =
Cᴰ.⋆Assocᴰ (elim-F-hom f) (elim-F-hom g) (elim-F-hom h) i
elim-F-hom (isSetExp f g p q i j) =
isOfHLevel→isOfHLevelDep 2 (λ _ Cᴰ.isSetHomᴰ)
(elim-F-hom f) (elim-F-hom g)
(cong elim-F-hom p) (cong elim-F-hom q)
(isSetExp f g p q)
i j
elim-F-hom !ₑ = !tᴰ _
-- TODO: Why does this need rectify?
elim-F-hom (⊤η f i) =
R.≡[]-rectify {p' = ⊤η f} (𝟙ηᴰ (elim-F-hom f)) i
elim-F-hom π₁ = π₁ᴰ
elim-F-hom π₂ = π₂ᴰ
elim-F-hom ⟨ f₁ , f₂ ⟩ = elim-F-hom f₁ ,pᴰ elim-F-hom f₂
elim-F-hom (×β₁ {t = f₁}{t' = f₂} i) =
×β₁ᴰ {f₁ᴰ = elim-F-hom f₁} {f₂ᴰ = elim-F-hom f₂} i
elim-F-hom (×β₂ {t = f₁}{t' = f₂} i) =
×β₂ᴰ {f₁ᴰ = elim-F-hom f₁} {f₂ᴰ = elim-F-hom f₂} i
-- TODO: Why do we need this rectify too?
elim-F-hom (×η {t = f} i) =
R.≡[]-rectify {p' = ×η {t = f}} (×ηᴰ {fᴰ = elim-F-hom f}) i
elim-F-hom : {c c'} (f : |FreeCartesianCategory| [ c , c' ])
Cᴰ [ f ][ elim-F-ob c , elim-F-ob c' ]
elim-F-hom (↑ₑ t) = ı-hom t
elim-F-hom idₑ = Cᴰ.idᴰ
elim-F-hom (f ⋆ₑ g) = elim-F-hom f Cᴰ.⋆ᴰ elim-F-hom g
elim-F-hom (⋆ₑIdL f i) = Cᴰ.⋆IdLᴰ (elim-F-hom f) i
elim-F-hom (⋆ₑIdR f i) = Cᴰ.⋆IdRᴰ (elim-F-hom f) i
elim-F-hom (⋆ₑAssoc f g h i) =
Cᴰ.⋆Assocᴰ (elim-F-hom f) (elim-F-hom g) (elim-F-hom h) i
elim-F-hom (isSetExp f g p q i j) =
isOfHLevel→isOfHLevelDep 2 (λ _ Cᴰ.isSetHomᴰ)
(elim-F-hom f) (elim-F-hom g)
(cong elim-F-hom p) (cong elim-F-hom q)
(isSetExp f g p q)
i j
elim-F-hom !ₑ = !tᴰ _
-- TODO: Why does this need rectify?
elim-F-hom (⊤η f i) =
R.≡[]-rectify {p' = ⊤η f} (𝟙ηᴰ (elim-F-hom f)) i
elim-F-hom π₁ = π₁ᴰ
elim-F-hom π₂ = π₂ᴰ
elim-F-hom ⟨ f₁ , f₂ ⟩ = elim-F-hom f₁ ,pᴰ elim-F-hom f₂
elim-F-hom (×β₁ {t = f₁}{t' = f₂} i) =
×β₁ᴰ {f₁ᴰ = elim-F-hom f₁} {f₂ᴰ = elim-F-hom f₂} i
elim-F-hom (×β₂ {t = f₁}{t' = f₂} i) =
×β₂ᴰ {f₁ᴰ = elim-F-hom f₁} {f₂ᴰ = elim-F-hom f₂} i
-- TODO: Why do we need this rectify too?
elim-F-hom (×η {t = f} i) =
R.≡[]-rectify {p' = ×η {t = f}} (×ηᴰ {fᴰ = elim-F-hom f}) i

elim : GlobalSection Cᴰ
elim .F-obᴰ = elim-F-ob
elim .F-homᴰ = elim-F-hom
elim .F-idᴰ = refl
elim .F-seqᴰ _ _ = refl

module _
{D : Category ℓD ℓD'}
{F : Functor |FreeCartesianCategory| D}
{Dᴰ : Categoryᴰ D ℓDᴰ ℓDᴰ'}
where
module _
(lt : LiftedTerminal (reindex Dᴰ F)
(terminalToUniversalElement (FreeCartesianCategory .snd .fst)))
(lbp : LiftedBinProducts (reindex Dᴰ F)
(BinProductsToBinProducts' _ (FreeCartesianCategory .snd .snd)))
where
private
module Dᴰ = Categoryᴰ Dᴰ
CCᴰ : CartesianCategoryᴰ _ ℓDᴰ ℓDᴰ'
CCᴰ = reindex Dᴰ F , (lt , lbp)
module _
: (o : Q .fst) Dᴰ.ob[ F ⟅ ↑ o ⟆ ])
: (e : Q .snd .mor)
Dᴰ.Hom[ F ⟪ ↑ₑ e ⟫ ][
elim-F-ob CCᴰ ϕ (Q.Dom e) ,
elim-F-ob CCᴰ ϕ (Q.Cod e)
])
where
elimLocal' : Section F Dᴰ
elimLocal' = GlobalSectionReindex→Section Dᴰ F (elim CCᴰ ϕ ψ)

module _
(vt : VerticalTerminalAt Dᴰ (F ⟅ ⊤ ⟆))
(lift-π₁₂ : {c c' : Q.Ob}
(Fcᴰ : Categoryᴰ.ob[ Dᴰ ] (F ⟅ c ⟆))
(Fc'ᴰ : Categoryᴰ.ob[ Dᴰ ] (F ⟅ c' ⟆))
(CartesianOver Dᴰ Fcᴰ (F ⟪ π₁ ⟫) Σ.×
CartesianOver Dᴰ Fc'ᴰ (F ⟪ π₂ ⟫)))
(∧ : {c c' : Q.Ob}
(Fcᴰ : Categoryᴰ.ob[ Dᴰ ] (F ⟅ c ⟆))
(Fc'ᴰ : Categoryᴰ.ob[ Dᴰ ] (F ⟅ c' ⟆))
VerticalBinProductsAt Dᴰ
(lift-π₁₂ Fcᴰ Fc'ᴰ .fst .CartesianOver.f*cᴰ' ,
lift-π₁₂ Fcᴰ Fc'ᴰ .snd .CartesianOver.f*cᴰ'))
where
private
module Dᴰ = Categoryᴰ Dᴰ
lt : LiftedTerminal (reindex Dᴰ F)
(terminalToUniversalElement (FreeCartesianCategory .snd .fst))
lt = LiftedTerminalReindex vt
lbp : LiftedBinProducts (reindex Dᴰ F)
(BinProductsToBinProducts' _ (FreeCartesianCategory .snd .snd))
lbp = LiftedBinProdsReindex
(BinProductsToBinProducts' _ (FreeCartesianCategory .snd .snd))
lift-π₁₂ ∧
CCᴰ : CartesianCategoryᴰ _ ℓDᴰ ℓDᴰ'
CCᴰ = reindex Dᴰ F , (lt , lbp)
module _
: (o : Q .fst) Dᴰ.ob[ F ⟅ ↑ o ⟆ ])
: (e : Q .snd .mor)
Dᴰ.Hom[ F ⟪ ↑ₑ e ⟫ ][
elim-F-ob CCᴰ ϕ (Q.Dom e) ,
elim-F-ob CCᴰ ϕ (Q.Cod e)
]) where
elimLocal : Section F Dᴰ
elimLocal = elimLocal' lt lbp ϕ ψ

module _ (CC : CartesianCategory ℓC ℓC')
: (o : Q .fst) CC .fst .ob)
where
ϕ* : Q.Ob CC .fst .ob
ϕ* = elim-F-ob
(weaken |FreeCartesianCategory| (CC .fst) ,
termWeaken (terminalToUniversalElement (FreeCartesianCategory .snd .fst))
(terminalToUniversalElement (CC .snd .fst)) ,
binprodWeaken
(BinProductsToBinProducts' _ (FreeCartesianCategory .snd .snd))
(BinProductsToBinProducts' _ (CC .snd .snd)))
ϕ
module _: (e : Q .snd .mor)
CC .fst [
ϕ* (Q.Dom e) ,
ϕ* (Q.Cod e)
])
where
rec : Functor |FreeCartesianCategory| (CC .fst)
rec = introS⁻ (elim
((weaken |FreeCartesianCategory| (CC .fst)) ,
termWeaken _ (terminalToUniversalElement (CC .snd .fst)) ,
binprodWeaken
(BinProductsToBinProducts' _ (FreeCartesianCategory .snd .snd))
(BinProductsToBinProducts' _ (CC .snd .snd)))
ϕ ψ)
2 changes: 1 addition & 1 deletion Cubical/Categories/Constructions/Free/Category/Quiver.agda
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ open import Cubical.Data.Graph.Displayed as Graph hiding (Section)
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Constructions.BinProduct as BP
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Constructions.Weaken as Wk
open import Cubical.Categories.Displayed.Constructions.Weaken.Base as Wk
open import Cubical.Categories.Displayed.Instances.Path
open import Cubical.Categories.Displayed.Properties as Reindex
open import Cubical.Categories.Displayed.Constructions.Reindex as Reindex
Expand Down
4 changes: 2 additions & 2 deletions Cubical/Categories/Constructions/Presented.agda
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,13 @@ open import Cubical.HITs.SetQuotients as SetQuotient
renaming ([_] to [_]q) hiding (rec; elim)

open import Cubical.Categories.Constructions.Quotient as CatQuotient
open import Cubical.Categories.Displayed.Constructions.Weaken as Weaken
open import Cubical.Categories.Displayed.Constructions.Weaken.Base as Weaken
open import Cubical.Categories.Constructions.Free.Category.Quiver as Free
hiding (rec; elim)
open import Cubical.Categories.Constructions.Quotient.More as CatQuotient
hiding (elim)
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Constructions.Weaken
open import Cubical.Categories.Displayed.Constructions.Weaken.Base
open import Cubical.Categories.Displayed.Reasoning as HomᴰReasoning
open import Cubical.Categories.Displayed.Section.Base

Expand Down
32 changes: 26 additions & 6 deletions Cubical/Categories/Displayed/Constructions/Reindex/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -220,13 +220,33 @@ module _ {C : Category ℓC ℓC'}{D : Category ℓD ℓD'}
VerticalBinProductsAt Dᴰ (lift-π₁ .f*cᴰ' , lift-π₂ .f*cᴰ')
VerticalBinProds→ϕ[π₁x]∧ψ[π₂x] = vbps _

module _
(prods : BinProducts' C) where
private module B = BinProducts'Notation _ prods
module _
(lift-π₁₂ : {c c' : C .ob}
(Fcᴰ : Dᴰ.ob[ F ⟅ c ⟆ ])(Fc'ᴰ : Dᴰ.ob[ F ⟅ c' ⟆ ])
CartesianOver Dᴰ Fcᴰ (F ⟪ B.π₁ {a = c} {b = c'} ⟫) ×
CartesianOver Dᴰ Fc'ᴰ (F ⟪ B.π₂ {a = c} {b = c'} ⟫))
(vbp : {c c' : C .ob} (Fcᴰ : Dᴰ.ob[ F ⟅ c ⟆ ])(Fc'ᴰ : Dᴰ.ob[ F ⟅ c' ⟆ ])
VerticalBinProductsAt Dᴰ (lift-π₁₂ Fcᴰ Fc'ᴰ .fst .f*cᴰ' ,
lift-π₁₂ Fcᴰ Fc'ᴰ .snd .f*cᴰ'))
where
LiftedBinProdsReindex : LiftedBinProducts (reindex Dᴰ F) prods
LiftedBinProdsReindex (Fcᴰ , Fc'ᴰ) = LiftedBinProdReindex (prods _)
(lift-π₁₂ Fcᴰ Fc'ᴰ .fst)
(lift-π₁₂ Fcᴰ Fc'ᴰ .snd)
(vbp Fcᴰ Fc'ᴰ)

module _ (prods : BinProducts' C)
(fib : isFibration Dᴰ)(vbps : VerticalBinProducts Dᴰ) where
LiftedBinProdsReindex : LiftedBinProducts (reindex Dᴰ F) prods
LiftedBinProdsReindex (Fcᴰ , Fc'ᴰ) = LiftedBinProdReindex (prods _)
(isFib→F⟪π₁⟫* (prods _) Fcᴰ fib)
(isFib→F⟪π₂⟫* (prods _) Fc'ᴰ fib)
(VerticalBinProds→ϕ[π₁x]∧ψ[π₂x] (prods _)
(fib : isFibration Dᴰ)
(vbps : VerticalBinProducts Dᴰ) where
LiftedBinProdsReindex' : LiftedBinProducts (reindex Dᴰ F) prods
LiftedBinProdsReindex' = LiftedBinProdsReindex prods
(λ Fcᴰ Fc'ᴰ
isFib→F⟪π₁⟫* (prods _) Fcᴰ fib , isFib→F⟪π₂⟫* (prods _) Fc'ᴰ fib)
(λ Fcᴰ Fc'ᴰ VerticalBinProds→ϕ[π₁x]∧ψ[π₂x]
(prods _)
(isFib→F⟪π₁⟫* (prods _) Fcᴰ fib)
(isFib→F⟪π₂⟫* (prods _) Fc'ᴰ fib)
vbps)
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ open import Cubical.Categories.Displayed.Reasoning
open import Cubical.Categories.Displayed.Constructions.Reindex as Reindex
hiding (introS)
open import Cubical.Categories.Displayed.Constructions.Reindex.Eq as ReindexEq
open import Cubical.Categories.Displayed.Constructions.Weaken as Wk
open import Cubical.Categories.Displayed.Constructions.Weaken.Base as Wk
hiding (introS; introF)
open import Cubical.Categories.Displayed.Properties
open import Cubical.Categories.Displayed.Functor
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.Reasoning
open import Cubical.Categories.Displayed.Constructions.Reindex as Reindex
hiding (introS; introF)
open import Cubical.Categories.Displayed.Constructions.Weaken as Wk
open import Cubical.Categories.Displayed.Constructions.Weaken.Base as Wk
hiding (introS; introF)
open import Cubical.Categories.Displayed.Properties
open import Cubical.Categories.Displayed.Functor
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Categories/Displayed/Constructions/Slice.agda
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ open import Cubical.Categories.Constructions.BinProduct as BP
open import Cubical.Categories.Constructions.BinProduct.More as BP
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.Displayed.Base as Disp
open import Cubical.Categories.Displayed.Constructions.Weaken as Wk
open import Cubical.Categories.Displayed.Constructions.Weaken.Base as Wk
open import Cubical.Categories.Displayed.Constructions.Reindex.Eq as Reindex
open import Cubical.Categories.Displayed.BinProduct
open import Cubical.Categories.Displayed.Constructions.BinProduct.More as BPᴰ
Expand Down
22 changes: 15 additions & 7 deletions Cubical/Categories/Displayed/Constructions/Weaken/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,20 @@ module Cubical.Categories.Displayed.Constructions.Weaken.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Foundations.Equiv

open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.Categories.Presheaf

open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Section.Base
open import Cubical.Categories.Displayed.Properties
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Limits.BinProduct
open import Cubical.Categories.Constructions.TotalCategory as TC
hiding (intro)
open import Cubical.Categories.Constructions.TotalCategory.More as TC
Expand All @@ -28,10 +31,15 @@ private
open Categoryᴰ
open UniversalElementᴰ
open UniversalElement
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'}
(termC : Terminal' C) (termD : Terminal' D)
where
termWeaken : LiftedTerminal (weaken C D) termC
termWeaken .vertexᴰ = termD .vertex
termWeaken .elementᴰ = termD .element
termWeaken .universalᴰ = termD .universal _
module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} where
module _ (termC : Terminal' C) (termD : Terminal' D) where
termWeaken : LiftedTerminal (weaken C D) termC
termWeaken .vertexᴰ = termD .vertex
termWeaken .elementᴰ = termD .element
termWeaken .universalᴰ = termD .universal _
module _ (prodC : BinProducts' C)(prodD : BinProducts' D) where
private module B = BinProducts'Notation _ prodD
binprodWeaken : LiftedBinProducts (weaken C D) prodC
binprodWeaken _ .vertexᴰ = prodD _ .vertex
binprodWeaken _ .elementᴰ = prodD _ .element
binprodWeaken _ .universalᴰ = prodD _ .universal _
2 changes: 1 addition & 1 deletion Cubical/Categories/Displayed/Functor/More.agda
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ import Cubical.Data.Equality.More as Eq
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Properties
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Constructions.Weaken
open import Cubical.Categories.Displayed.Constructions.Weaken.Base
import Cubical.Categories.Displayed.Reasoning as HomᴰReasoning

private
Expand Down
3 changes: 2 additions & 1 deletion Cubical/Categories/Displayed/Limits/BinProduct.agda
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,8 @@ module LiftedBinProductsNotation
where
private
,pᴰ-contr = bpᴰ (d₁ , d₂) .universalᴰ .equiv-proof
(R.reind (sym ×β₁) (fᴰ Cᴰ.⋆ᴰ π₁ᴰ) , R.reind (sym ×β₂) (fᴰ Cᴰ.⋆ᴰ π₂ᴰ)) .snd
(R.reind (sym ×β₁) (fᴰ Cᴰ.⋆ᴰ π₁ᴰ) ,
R.reind (sym ×β₂) (fᴰ Cᴰ.⋆ᴰ π₂ᴰ)) .snd
((R.reind (×η {f = f}) fᴰ) , ΣPathP
( R.≡[]-rectify (R.≡[]∙ _ _
(R.≡[]⋆ _ _ (R.reind-filler-sym (sym ×η) fᴰ) (refl {x = π₁ᴰ}))
Expand Down
2 changes: 1 addition & 1 deletion Cubical/Categories/Profunctor/FunctorComprehension.agda
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ open import Cubical.Categories.Instances.Functors.More
open import Cubical.Categories.Displayed.Functor
open import Cubical.Categories.Displayed.Constructions.Comma
open import Cubical.Categories.Displayed.Constructions.Graph
open import Cubical.Categories.Displayed.Constructions.Weaken
open import Cubical.Categories.Displayed.Constructions.Weaken.Base
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.HLevels
open import Cubical.Categories.Displayed.HLevels.More
Expand Down

0 comments on commit 0849f9f

Please sign in to comment.