pynb
builds on top of nbconvert and lets you manage Jupyter notebooks as plain Python code with embedded Markdown text, enabling:
-
Python development environment: Use your preferred IDE/editor, ensure style compliance, navigate, refactor, and test your notebooks as regular Python code.
-
Version control: Track changes, review pull requests and merge conflicts as with regular Python code. The cell outputs are stored separately and don't interfere with versioning.
-
Consistent execution state: Never lose track again of the execution state. Notebooks are always executed from clean iPython kernels and the cell execution is cached.
You also get parametrized notebooks with batch and programmatic execution.
pynb
is compatible with Python >= 3.4
and can be installed with pip:
pip install pynb
A pynb
notebook is a Python function that represents a sequence of cells whose type is either Python or Markdown:
# Contents of sum.py
def cells(a, b=3):
'''
# Sum
'''
a = int(a)
b = int(b)
'''
'''
a + b
The example above defines a notebook composed of three cells: Markdown, Python, Python.
Function parameters are mapped to notebook arguments and are injected as an additional cell at runtime. Lines whose content is '''
serve as cell separators. Markdown cells are embedded in multi-line string blocks surrounded by '''
. Consecutive Python cells are separated by '''\n'''
. Empty cells are ignored and trailing spaces or empty lines within cells are stripped away.
The Python statement return
has a special meaning and it instructs the parser to ignore the remaining content of the notebook.
A Python module can contain several functions defining multiple notebooks. Examples can be found notebooks directory.
The pynb
command line tool is tailored for simplicity and is the fastest way to write & run a pynb
notebook.
To run the sum.py:cells
notebook reported above:
pynb notebooks/sum.py --param a=3 --param b=5
You can set a different logging level with the --log-level
option. The default logging level is INFO.
By default, a Markdown cell is appended if exporting to Jupyter notebook format with details on the execution: location of Python notebook, execution time and complete command line. You can avoid the insertion of the footer cell with the --disable-footer
option.
The default name of the function defining the notebook is cells
. A different function name can be specified by appending :func_name
to the module pathname. E.g., sum.py:func_name
. sum.py:cells
is therefore equivalent to sum.py
. A Python module can contain multiple notebook definitions by using different function names.
Parameters are passed from the command line with --param
options, whose value is formatted as name=value
. Names are separated from values at the first occurrence of character =
. Values are strings and might require casting to their proper type inside the notebook.
Remark that pynb support also default parameter definitions, as it can be seen with b
in the example. Those default parameters can be overwritten using the standard --param
notation.
You can import a Jupyter notebook and export it as Python notebook as follows:
pynb --import-ipynb src.ipynb --export-pynb dst.py --no-exec
The options --export-html
and --export-ipynb
let you export to .html
and .ipynb
file formats, respectively.
The special output pathname -
points to standard output.
If you only want to convert the notebook without executing it, you can skip its execution using the --no-exec
option.
If you export to a Jupyter notebook, you can set the kernel with the --kernel
option:
pynb notebooks/simple.py --disable-cache --kernel python3 --export-ipynb simple.ipynb
The caching system allows you to reuse transparently prior cell executions and it's enabled by default.
The option --disable-cache
disables the cache.
You can force a complete new notebook execution by ignoring the existing cache with option --ignore-cache
.
To clean the cache, remove manually the files /tmp/pynb-cache-*
.
How does it work? An hash is generated for each cell by using the full pathname of the file containing the notebook definition, runtime notebook parameters, cell content and position. After executing a cell for the first time, its output and iPython kernel state are cached. Subsequent executions of the same cell use the cached cell state and speed up significantly the notebook execution.
The iPython session is dumped using the dill package. It is not always possible to serialize objects. E.g., a variable representing an open file cannot be serialized. Other notable cases are database connections and iterators. In such situations, a warning serialization failed
is reported and the cache is disabled for the current and subsequent cells. Serialization issues do not affect the outputs of the notebook execution.
How to fix serialization failures:
-
First, enable the DEBUG logging with
--log-level DEBUG
to print the stack trace of the serialization error (multi-line and coloured). The stack trace will provide hints on which variables are causing the problem. -
Second, fix the code:
-
Move the problematic variables inside a with statement. In general, the
with
statement ensures a clean & lean iPython kernel state. -
Delete the problematic variables with the del statement.
-
Reset the iPython session resolving any serialization issue with the iPython's reset built-in magic command:
get_ipython().magic('reset -f')
-
The pynb.Notebook
class interface provides a finer control on parametrization and execution.
To define a notebook, extend the Notebook
class and use it as in the example below:
# Contents of sumapp.py
from pynb.notebook import Notebook
class SumNotebook(Notebook):
def cells(self, a, b):
a + b
if __name__ == "__main__":
nb = SumNotebook()
nb.add_argument('--a', default=5, type=int)
nb.add_argument('--b', type=int)
nb.add_argument('--print-ipynb', action="store_true", default=False)
nb.run()
if nb.args.print_ipynb:
nb.export_ipynb('-')
To run it:
python3 notebooks/sumapp.py --b 3 --print-ipynb
Class SumNotebook
extends Notebook
and defines the notebook in method cells
. Method Notebook.add_argument
maps to ArgumentParser.add_argument and lets you define additional notebook parameters or custom options. Method Notebook.run
takes care of executing the notebook taking into account the command line arguments. After running the notebook, the attribute nb.args
contains the object returned by ArgumentParser.parse_args and can be used to handle additional user-defined options. E.g., --print-ipynb
.
If you want to handle user-defined parameters before calling nb.run()
, you can call nb.parse_args()
to initialize explicitly nb.args
. There must be an exact match between the parameter names of the cells
function and argparse
attribute names.
All notebook parameter values that have no default value must be provided from the command line. E.g., parameter b
in the example above.
All command line options available from the pynb
command line tool are also available with the class interface.
Minodes supports this and other Open Source projects.
The pynb project is released under the MIT license. Please see LICENSE.txt.
On MacOS, ignore these warning messages RuntimeWarning: Failed to set sticky bit on
. It's a known bug.
In case of errors, try to update the involved packages:
pip install pynb --upgrade --no-cache
Tests, builds and releases are managed with Fabric
.
The build, test and release environment is managed with Docker
.
Install Docker and Fabric in your system. To install Fabric:
pip install Fabric3
For ease of development, the file requirements.txt
includes the package dependencies.
Any changes to the package dependencies in setup.py
must be reflected in requirements.txt
.
The Jupyter server is reachable at http://127.0.0.1:8889/tree and
points to the notebooks
directory.
Create a file secrets.py
in the project directory with the Pypi credentials in this format:
pypi_auth = {
'user': 'youruser',
'pass': 'yourpass'
}
To release a new version:
fab release
To run the py.test tests:
fab test
To run a single test:
fab test:tests/test_class.py::test_custom_nbapp
To run tests printing output and stopping at first error:
fab test_sx
To run the pep8 test:
fab test_pep8
To fix some common pep8 errors in the code:
fab fix_pep8
To test the pip package after a new release (end-to-end test):
fab test_pip
To build the Docker image:
fab docker_build
To force a complete rebuild of the Docker image without using the cache:
fab docker_build:--no-cache
To start the daemonized Docker container:
fab docker_start
To stop the Docker container:
fab docker_stop
To open a shell in the Docker container:
fab docker_sh
- Fork it
- Create your feature branch:
git checkout -b my-new-feature
- Commit your changes:
git commit -am 'Add some feature'
- Push to the branch:
git push origin my-new-feature
- Create a new Pull Request