-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
13 changed files
with
929 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
Require Lia ZArith. | ||
|
||
(** * Additional properties of natural numbers *) | ||
|
||
Section PowerTwo. | ||
Import Coq.ZArith.Zpower. | ||
Import Coq.ZArith.BinIntDef. | ||
Import BinNums. | ||
|
||
|
||
Open Scope Z_scope. | ||
|
||
Theorem two_power_nat_0 : | ||
two_power_nat 0 = 1%Z. | ||
Proof. | ||
reflexivity. | ||
Qed. | ||
|
||
Theorem two_power_nat_gt_0: | ||
forall n : nat, BinInt.Z.gt (two_power_nat n) 0%Z. | ||
Proof. | ||
induction n. | ||
- rewrite two_power_nat_0. | ||
reflexivity. | ||
- rewrite two_power_nat_S. | ||
Lia.lia. | ||
Qed. | ||
|
||
|
||
(* Lemma two_power_nat_two_p: *) | ||
(* forall x, two_power_nat x = two_p (Z.of_nat x). *) | ||
(* Proof. *) | ||
(* induction x. auto. *) | ||
(* rewrite two_power_nat_S. rewrite Nat2Z.inj_succ. rewrite two_p_S. Lia.lia. Lia.lia. *) | ||
(* Qed. *) | ||
End PowerTwo. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
From Coq.Logic Require Decidable. | ||
|
||
Import Decidable. | ||
|
||
Section Decidability. | ||
|
||
Definition dec(A: Prop) := { A } + { ~ A }. | ||
|
||
Lemma dec_decidable : | ||
forall P, dec P -> decidable P. | ||
Proof. unfold dec, decidable. intros ? []; tauto. Qed. | ||
|
||
|
||
Theorem dec_conj: | ||
forall A B: Prop, | ||
dec A -> | ||
dec B -> | ||
dec (A /\ B). | ||
Proof. unfold dec. intros; tauto. Qed. | ||
|
||
Theorem dec_not : forall A:Prop, dec A -> dec (~ A). | ||
Proof. unfold dec. tauto. Qed. | ||
|
||
Theorem dec_not_not : forall P:Prop, dec P -> ~ ~ P -> P. | ||
Proof. unfold dec; tauto. Qed. | ||
|
||
Theorem not_not : forall P: Prop, | ||
dec P -> ~ ~ P -> P. | ||
Proof. unfold dec; tauto. Qed. | ||
|
||
Theorem dec_or: | ||
forall A B: Prop, | ||
dec A -> | ||
dec B -> | ||
dec (A \/ B). | ||
Proof. unfold dec; intros; tauto. Qed. | ||
|
||
Definition eq_dec (T:Type) := forall x1 x2: T, dec (x1 = x2). | ||
|
||
End Decidability. | ||
|
||
Ltac decide_equality := | ||
unfold eq_dec, dec in *; | ||
repeat decide equality; | ||
unfold eq_dec, dec in *; | ||
eauto with decidable_prop. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
Require BinNums BinInt ZArith Arith_ext. | ||
|
||
(** * Additional properties of positive numbers *) | ||
|
||
|
||
(** ** Power *) | ||
Section ModuloPowerOfTwo. | ||
Import Arith_ext BinNums BinInt ZArith Lia. | ||
|
||
Open Scope Z_scope. | ||
|
||
|
||
Fixpoint mod_pow2 (p: positive) (n: nat) {struct n} : Z := | ||
match n, p with | ||
| O, _ => 0 | ||
| S m, xH => 1 | ||
| S m, xO tail => Z.double (mod_pow2 tail m) | ||
| S m, xI tail => Z.succ_double (mod_pow2 tail m) | ||
end. | ||
|
||
Theorem mod_pow2_ge_0: | ||
forall p n, mod_pow2 p n >= 0. | ||
Proof. | ||
induction p; destruct n; simpl; auto with zarith. | ||
- rewrite Z.succ_double_spec. | ||
apply Z.le_ge. | ||
apply Z.add_nonneg_nonneg; auto with zarith. | ||
replace 0 with ( 0 * mod_pow2 p n); [|auto with zarith]. | ||
eapply Zmult_le_compat_r; [auto with zarith|]. | ||
apply Z.ge_le. | ||
apply IHp. | ||
- rewrite Z.double_spec. | ||
replace 0 with ( 0 * mod_pow2 p n); [|auto with zarith]. | ||
eapply Zmult_ge_compat_r; [auto with zarith|]. | ||
apply IHp. | ||
Qed. | ||
|
||
Lemma mod_pow2_limit: | ||
forall p n, mod_pow2 p n < two_power_nat n. | ||
Proof. | ||
intros p n; revert p. | ||
induction n; simpl; intros. | ||
- rewrite Arith_ext.two_power_nat_0. lia. | ||
- rewrite two_power_nat_S. destruct p. | ||
+ pose (IHn p). rewrite Z.succ_double_spec. lia. | ||
+ pose (IHn p). rewrite Z.double_spec. lia. | ||
+ pose (two_power_nat_gt_0 n). lia. | ||
Qed. | ||
|
||
|
||
Close Scope Z_scope. | ||
End ModuloPowerOfTwo. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
Require FMapPositive. | ||
|
||
Import FMapPositive.PositiveMap BinPos. | ||
|
||
Definition pmap_slice {V} (m:t V) (from_incl to_excl:positive ) : t V := | ||
let leb x y := negb (Pos.ltb y x) in | ||
let in_range k := andb (leb from_incl k) (Pos.ltb k to_excl) in | ||
let f k cell accmap := | ||
if in_range k | ||
then | ||
add k cell accmap | ||
else | ||
accmap | ||
in | ||
fold f m (empty _). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
Require Coq.Logic.Decidable. | ||
Require Decidability. | ||
Require PArith. | ||
Require PArith_ext. | ||
Require ZArith. | ||
Require Lia. | ||
|
||
(** * Properties of Z *) | ||
|
||
Section Decidability. | ||
(** ** Decidability *) | ||
Import Decidability ZArith. | ||
|
||
Lemma eq_dec : eq_dec BinNums.Z. | ||
decide_equality. | ||
Defined. | ||
|
||
Open Scope Z_scope. | ||
Definition lt_dec: forall (x y: Z), {x < y} + {x >= y}. | ||
Proof. | ||
unfold Z.lt, Z.ge. | ||
intros x y; destruct (Z.compare x y); auto; right; intro H; inversion H. | ||
Defined. | ||
|
||
Definition gt_dec: forall (x y: Z), {x > y} + {x <= y}. | ||
Proof. | ||
unfold Z.gt, Z.le. | ||
intros x y; destruct (Z.compare x y); auto; right; intro H; inversion H. | ||
Defined. | ||
|
||
End Decidability. | ||
|
||
|
||
Section ModuloPowerOfTwo. | ||
Import ZArith. | ||
Import PArith_ext. | ||
Open Scope Z. | ||
|
||
Definition mod_pow2 (z: Z) (n: nat) : Z := | ||
match z with | ||
| Z0 => 0 | ||
| Zpos p => mod_pow2 p n | ||
| Zneg p => let r := mod_pow2 p n in | ||
if ZArith_ext.eq_dec r 0%Z | ||
then 0 | ||
else ZArith.Zpower.two_power_nat n - r | ||
end. | ||
|
||
|
||
Theorem mod_pow2_ge_0: | ||
forall z n, mod_pow2 z n >= 0. | ||
Proof. | ||
intros. unfold mod_pow2. pose ( Arith_ext.two_power_nat_gt_0 n) as Hpos. | ||
destruct z. | ||
- auto with zarith. | ||
- exact (PArith_ext.mod_pow2_ge_0 p n). | ||
- destruct (eq_dec _ 0) . | ||
+ auto with zarith. | ||
+ pose (PArith_ext.mod_pow2_ge_0 p n). | ||
pose (PArith_ext.mod_pow2_limit p n). | ||
Lia.lia. | ||
Qed. | ||
|
||
Theorem mod_pow2_limit: | ||
forall z n, mod_pow2 z n < two_power_nat n. | ||
Proof. | ||
intros. unfold mod_pow2. pose ( Arith_ext.two_power_nat_gt_0 n) as Hpos. | ||
destruct z. | ||
- auto with zarith. | ||
- pose (PArith_ext.mod_pow2_limit p n). auto with zarith. | ||
- destruct (eq_dec _ 0) . | ||
+ auto with zarith. | ||
+ pose (PArith_ext.mod_pow2_ge_0 p n). | ||
pose (PArith_ext.mod_pow2_limit p n). | ||
Lia.lia. | ||
Qed. | ||
|
||
Theorem mod_pow2_range: | ||
forall z n, 0 <= mod_pow2 z n < two_power_nat n. | ||
Proof. | ||
split. | ||
- apply Z.ge_le. apply mod_pow2_ge_0. | ||
- apply mod_pow2_limit. | ||
Qed. | ||
|
||
(* Lemma mod_modulus_range: *) | ||
(* forall x, 0 <= Z_mod_modulus x < characteristic. *) | ||
(* Proof (Z_mod_two_p_range bits). *) | ||
|
||
(* Lemma Z_mod_modulus_range': *) | ||
(* forall x, -1 < Z_mod_modulus x < modulus. *) | ||
(* Proof. *) | ||
|
||
(* Lemma Z_mod_modulus_eq: *) | ||
(* forall x, Z_mod_modulus x = x mod modulus. *) | ||
(* Proof (Z_mod_two_p_eq wordsize). *) | ||
|
||
|
||
Close Scope Z_scope. | ||
End ModuloPowerOfTwo. | ||
|
||
Section Range. | ||
Import ZArith. | ||
Definition in_range (x y z:Z) : bool := | ||
if Z_le_dec x y then | ||
if Z_lt_dec y z then true | ||
else false | ||
else false. | ||
|
||
Theorem in_range_spec_l: | ||
forall x y z, (x <= y < z)%Z -> in_range x y z = true. | ||
Proof. | ||
unfold in_range; intros x y z [H H']. | ||
destruct (Z_le_dec _ _); auto. | ||
destruct (Z_lt_dec _ _); auto. | ||
Qed. | ||
|
||
Theorem in_range_spec_r: | ||
forall x y z, in_range x y z = true -> (x <= y < z)%Z. | ||
Proof. | ||
unfold in_range. | ||
intros x y z H. | ||
destruct (Z_le_dec _ _); try destruct (Z_lt_dec _ _); auto; try discriminate. | ||
Qed. | ||
|
||
End Range. | ||
#[export] | ||
Hint Resolve eq_dec gt_dec lt_dec: decidable_prop. |
Oops, something went wrong.