-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
703 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# Using a network created by 'NetworkGenerator.R', add impedances for | ||
# calculating cycling accessibility | ||
|
||
# Assumes input network is a one-way network that includes elevation, | ||
# and that one-way daily traffic volumes are available | ||
|
||
addImpedances <- function() { | ||
|
||
# Parameters ----------------------------------------------------------------- | ||
# Input network, to which cycling impedances are to be added, with layer names | ||
# input.network <- "./output/test/network.sqlite" | ||
input.network <- "./output/test/melbourne_network.sqlite" #<<< OLD VERSION FOR TESTING | ||
input.node.layer <- "nodes" | ||
input.link.layer <- "links" | ||
|
||
# Traffic file, with links layer name - file must match input.network, | ||
# and with a 'total_vol' column containing 1-way daily traffic | ||
# traffic.file <- "./output/test/network_traffic.sqlite" | ||
traffic.file <- "./output/test/links_with_traffic.sqlite" #<<< OLD VERSION FOR TESTING | ||
traffic.link.layer <- "cars_aht" | ||
|
||
# Traffic multiplier - where volumes are for a sample of traffic only (eg | ||
# multiplier of 20 if the volumes are a 5% sample; use 1 if full volumes) | ||
traffic.multiplier <- 10 | ||
|
||
# Output location - same directory as input.network | ||
output.location <- paste0(path_dir(input.network), "/networkWeighted.sqlite") | ||
|
||
|
||
# Packages and functions ----------------------------------------------------- | ||
library(dplyr) | ||
library(sf) | ||
library(fs) | ||
|
||
dir_walk(path="./functions/",source, recurse=T, type = "file") | ||
|
||
|
||
# Load input network and traffic file ---------------------------------------- | ||
input.nodes <- st_read(input.network, layer = input.node.layer) | ||
input.links <- st_read(input.network, layer = input.link.layer) | ||
traffic.links <- st_read(traffic.file, layer = traffic.link.layer) | ||
|
||
|
||
# Add LTS and its impedance -------------------------------------------------- | ||
echo("Adding daily traffic volumes\n") | ||
networkTraffic <- addTraffic(input.nodes, | ||
input.links, | ||
traffic.links, | ||
traffic.multiplier) | ||
## TO DO - maybe traffic can just be joined on link_id? See whether traffic | ||
## file neatly uses the link_id's from the one-way input | ||
|
||
echo("Adding LTS and its impedance\n") | ||
networkLTS <- addLTS(networkTraffic[[1]], networkTraffic[[2]]) | ||
|
||
|
||
# Add slope impedance -------------------------------------------------------- | ||
echo("Adding slope impedance") | ||
networkSlope <- addSlopeImped(networkLTS[[1]], networkLTS[[2]]) | ||
|
||
|
||
# Calculate total weight ----------------------------------------------------- | ||
echo("Calculating cycling weight") | ||
networkWeighted <- | ||
list(networkSlope[[1]], | ||
networkSlope[[2]] %>% | ||
mutate(cycle.weight = length + LTS_imped + slope_imped)) | ||
|
||
|
||
# write output --------------------------------------------------------------- | ||
st_write(networkWeighted[[1]], "./output/test/networkWeighted.sqlite", layer = "nodes") | ||
st_write(networkWeighted[[2]], "./output/test/networkWeighted.sqlite", layer = "links") | ||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
# Make file of destinations required for accessibilty routing | ||
|
||
library(dplyr) | ||
library(sf) | ||
library(osmextract) | ||
|
||
# 1 Download OSM extract ---- | ||
# -----------------------------------------------------------------------------# | ||
# Download from https://www.interline.io/osm/extracts/ | ||
|
||
## Downloaded for Melbourne - melbourne_australia.osm.pbf | ||
|
||
|
||
# 2 Converting to .gpkg format ---- | ||
# -----------------------------------------------------------------------------# | ||
# input file name and project CRS | ||
INPUTFILE <- "./data/melbourne_australia.osm.pbf" | ||
|
||
PROJECT.CRS = 28355 | ||
|
||
# check layers | ||
st_layers(INPUTFILE) | ||
|
||
# check keys | ||
options(max.print = 2000) | ||
polygon.tags <- oe_get_keys(INPUTFILE, layer = "multipolygons") %>% sort() | ||
point.tags <- oe_get_keys(INPUTFILE, layer = "points") %>% sort() | ||
line.tags <- oe_get_keys(INPUTFILE, layer = "lines") %>% sort() | ||
|
||
# create gpkg file in same directory as INPUTFILE, using the 'extra_tags' | ||
# argument for specific extra tags required for various destination types | ||
oe_vectortranslate(INPUTFILE, layer = "multipolygons", | ||
extra_tags = c("access", "building", "grades", "healthcare", | ||
"healthcare:speciality","isced:level", | ||
"network", "operator", | ||
"operator:type", "public_transport", "railway", | ||
"school", "social_facility", "sport", | ||
"tourism", "train")) | ||
oe_vectortranslate(INPUTFILE, layer = "points", | ||
extra_tags = c("access", "amenity", "building", "grades", | ||
"healthcare", "healthcare:speciality", | ||
"isced:level", "landuse", "leisure", | ||
"network", "operator", | ||
"operator:type", "public_transport", "railway", | ||
"school", "shop", "social_facility", "sport", | ||
"tourism", "train")) | ||
oe_vectortranslate(INPUTFILE, layer = "lines", | ||
extra_tags = c("access", "amenity", "building", "grades", | ||
"healthcare", "healthcare:speciality", | ||
"isced:level", "landuse", "leisure", | ||
"network", "operator", | ||
"operator:type", "public_transport", "railway", | ||
"school", "shop", "social_facility", "sport", | ||
"tourism", "train", | ||
"smoothness", "surface")) | ||
oe_vectortranslate(INPUTFILE, layer = "multilinestrings") | ||
oe_vectortranslate(INPUTFILE, layer = "other_relations") | ||
|
||
|
||
# 3 Read in the .gpkg file ---- | ||
# -----------------------------------------------------------------------------# | ||
GPKG <- "./data/melbourne_australia.gpkg" | ||
|
||
polygons <- st_read(GPKG, layer = "multipolygons") %>% st_transform(PROJECT.CRS) | ||
points <- st_read(GPKG, layer = "points") %>% st_transform(PROJECT.CRS) | ||
lines <- st_read(GPKG, layer = "lines") %>% st_transform(PROJECT.CRS) | ||
multilines <- st_read(GPKG, layer = "multilinestrings") %>% st_transform(PROJECT.CRS) | ||
other_relations <- st_read(GPKG, layer = "other_relations") %>% st_transform(PROJECT.CRS) | ||
|
||
|
||
# 4 Extract required destinations ---- | ||
# -----------------------------------------------------------------------------# | ||
|
||
## 4.1 Tag combinations for feature types and network ---- | ||
## ----------------------------------------------------------------------------# | ||
# load functions for locating specific feature types | ||
source("./functions/getDestinationTypes.R") | ||
|
||
# load network | ||
NETWORK <- "./output/test/network.sqlite" #<<< CHECK FINAL NAME | ||
NODE.LAYER <- "nodes" | ||
LINK.LAYER <- "links" | ||
|
||
network.nodes <- st_read(NETWORK, layer = NODE.LAYER) | ||
network.links <- st_read(NETWORK, layer = LINK.LAYER) | ||
|
||
|
||
## 4.2 Compile point and polygon destinations ---- | ||
## ----------------------------------------------------------------------------# | ||
destination.layer <- function(layer) { | ||
return( | ||
bind_rows( | ||
getPlayground(layer) %>% mutate(dest_type = "playground"), | ||
getPark(layer) %>% mutate(dest_type = "park"), | ||
getSport(layer) %>% mutate(dest_type = "sport"), | ||
getKindergarten(layer) %>% mutate(dest_type = "kindergarten"), | ||
getCommunity(layer) %>% mutate(dest_type = "community_centre"), | ||
getLibrary(layer) %>% mutate(dest_type = "library"), | ||
getPrimary(layer) %>% mutate(dest_type = "primary_school"), | ||
getSecondary(layer) %>% mutate(dest_type = "secondary_school"), | ||
getClinic(layer) %>% mutate(dest_type = "health_clinic"), | ||
getDentist(layer) %>% mutate(dest_type = "dentist"), | ||
getPharmacy(layer) %>% mutate(dest_type = "pharmacy"), | ||
getConvenience(layer) %>% mutate(dest_type = "convenience_store"), | ||
getSupermarket(layer) %>% mutate(dest_type = "supermarket"), | ||
getShop(layer) %>% mutate(dest_type = "shop"), | ||
getPost(layer) %>% mutate(dest_type = "post_office"), | ||
getBank(layer) %>% mutate(dest_type = "bank"), | ||
getRestaurant(layer) %>% mutate(dest_type = "restaurant"), | ||
getCafe(layer) %>% mutate(dest_type = "cafe") | ||
)) | ||
} | ||
|
||
# create tables of destinations, and allocate unique id's (so features with | ||
# multiple nodes can be grouped by the id where required) | ||
destination.pt <- | ||
bind_rows(destination.layer(points), | ||
getStation() %>% mutate(dest_type = "railway_station")) %>% | ||
mutate(dest_id = row_number()) | ||
|
||
destination.poly <- | ||
destination.layer(polygons) %>% | ||
mutate(dest_id = max(destination.pt$dest_id) + row_number()) | ||
|
||
|
||
## 4.3 Find relevant nodes ---- | ||
## ----------------------------------------------------------------------------# | ||
# TO CONFIRM:- | ||
# For all destinations except parks and schools ('small features'), relevant | ||
# node is nearest node to point or to polygon centroid | ||
# For parks and schools ('large features'): | ||
# - points are buffered to 50m to create a polygon feature, | ||
# - for buffered points and polygons, relevant nodes are all nodes within the | ||
# feature and terminal nodes of links within 30m of boundary, or if none, | ||
# then nearest node to boundary | ||
|
||
# Maybe this should be all nodes within 30m of buffered feature, and if link is within | ||
# 30m of boundary but doesn't have a node within the buffer, then also its closest terminal | ||
# node ??? | ||
|
||
dest.small <- bind_rows(destination.pt, | ||
destination.poly %>% st_centroid()) %>% | ||
filter(!(dest_type %in% c("park", "primary_school", "secondary_school"))) | ||
near_node <- network.nodes$id[st_nearest_feature(dest.small, network.nodes)] | ||
dest.small.with.nodes <- cbind(dest.small %>% st_drop_geometry(), near_node) | ||
|
||
|
||
## NOTE - the code below is a simplified version which just finds nodes within | ||
## feature or its 30m buffer, or nearest node if none - doesn't extend to terminal | ||
## nodes of nearby features | ||
dest.large <- bind_rows(destination.pt %>% st_buffer(50), | ||
destination.poly) %>% | ||
filter(dest_type %in% c("park", "primary_school", "secondary_school")) | ||
|
||
dest.large.found.nodes <- dest.large %>% | ||
st_buffer(30) %>% | ||
st_intersection(., network.nodes %>% dplyr::select(near_node = id)) | ||
|
||
dest.large.need.nodes <- dest.large %>% | ||
filter(!(dest_id %in% dest.large.found.nodes$dest_id)) | ||
near_node <- network.nodes$id[st_nearest_feature(dest.large.need.nodes, network.nodes)] | ||
|
||
dest.large.with.nodes <- bind_rows(dest.large.found.nodes %>% st_drop_geometry(), | ||
cbind(dest.large.need.nodes %>% st_drop_geometry(), | ||
near_node)) | ||
|
||
dest.with.nodes <- bind_rows(dest.small.with.nodes, | ||
dest.large.with.nodes) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.