Skip to content

Commit

Permalink
Docs build of c0cd944cc456a061ce1deb8d46aa4514b72092af
Browse files Browse the repository at this point in the history
  • Loading branch information
MatplotlibCircleBot authored and MatplotlibCircleBot committed Jul 16, 2017
1 parent 031e31b commit c1b66f3
Show file tree
Hide file tree
Showing 7,246 changed files with 1,018,747 additions and 0 deletions.
The diff you're trying to view is too large. We only load the first 3000 changed files.
4 changes: 4 additions & 0 deletions .buildinfo
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: fee21aba0ad35d7353946075a94d4ae9
tags: 645f666f9bcd5a90fca523b33c5a78b7
Empty file added .nojekyll
Empty file.
54 changes: 54 additions & 0 deletions _downloads/2dcollections3d.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
{
"metadata": {
"language_info": {
"codemirror_mode": {
"version": 3,
"name": "ipython"
},
"name": "python",
"pygments_lexer": "ipython3",
"file_extension": ".py",
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"version": "3.5.2"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3",
"language": "python"
}
},
"cells": [
{
"source": [
"%matplotlib inline"
],
"metadata": {
"collapsed": false
},
"outputs": [],
"cell_type": "code",
"execution_count": null
},
{
"source": [
"\n# Plot 2D data on 3D plot\n\n\nDemonstrates using ax.plot's zdir keyword to plot 2D data on\nselective axes of a 3D plot.\n\n"
],
"metadata": {},
"cell_type": "markdown"
},
{
"source": [
"from mpl_toolkits.mplot3d import Axes3D\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nfig = plt.figure()\nax = fig.gca(projection='3d')\n\n# Plot a sin curve using the x and y axes.\nx = np.linspace(0, 1, 100)\ny = np.sin(x * 2 * np.pi) / 2 + 0.5\nax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)')\n\n# Plot scatterplot data (20 2D points per colour) on the x and z axes.\ncolors = ('r', 'g', 'b', 'k')\n\n# Fixing random state for reproducibility\nnp.random.seed(19680801)\n\nx = np.random.sample(20 * len(colors))\ny = np.random.sample(20 * len(colors))\nc_list = []\nfor c in colors:\n c_list.extend([c] * 20)\n# By using zdir='y', the y value of these points is fixed to the zs value 0\n# and the (x,y) points are plotted on the x and z axes.\nax.scatter(x, y, zs=0, zdir='y', c=c_list, label='points in (x,z)')\n\n# Make legend, set axes limits and labels\nax.legend()\nax.set_xlim(0, 1)\nax.set_ylim(0, 1)\nax.set_zlim(0, 1)\nax.set_xlabel('X')\nax.set_ylabel('Y')\nax.set_zlabel('Z')\n\n# Customize the view angle so it's easier to see that the scatter points lie\n# on the plane y=0\nax.view_init(elev=20., azim=-35)\n\nplt.show()"
],
"metadata": {
"collapsed": false
},
"outputs": [],
"cell_type": "code",
"execution_count": null
}
],
"nbformat": 4,
"nbformat_minor": 0
}
50 changes: 50 additions & 0 deletions _downloads/2dcollections3d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
"""
=======================
Plot 2D data on 3D plot
=======================
Demonstrates using ax.plot's zdir keyword to plot 2D data on
selective axes of a 3D plot.
"""

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.gca(projection='3d')

# Plot a sin curve using the x and y axes.
x = np.linspace(0, 1, 100)
y = np.sin(x * 2 * np.pi) / 2 + 0.5
ax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)')

# Plot scatterplot data (20 2D points per colour) on the x and z axes.
colors = ('r', 'g', 'b', 'k')

# Fixing random state for reproducibility
np.random.seed(19680801)

x = np.random.sample(20 * len(colors))
y = np.random.sample(20 * len(colors))
c_list = []
for c in colors:
c_list.extend([c] * 20)
# By using zdir='y', the y value of these points is fixed to the zs value 0
# and the (x,y) points are plotted on the x and z axes.
ax.scatter(x, y, zs=0, zdir='y', c=c_list, label='points in (x,z)')

# Make legend, set axes limits and labels
ax.legend()
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_zlim(0, 1)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

# Customize the view angle so it's easier to see that the scatter points lie
# on the plane y=0
ax.view_init(elev=20., azim=-35)

plt.show()
54 changes: 54 additions & 0 deletions _downloads/3D.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
{
"metadata": {
"language_info": {
"codemirror_mode": {
"version": 3,
"name": "ipython"
},
"name": "python",
"pygments_lexer": "ipython3",
"file_extension": ".py",
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"version": "3.5.2"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3",
"language": "python"
}
},
"cells": [
{
"source": [
"%matplotlib inline"
],
"metadata": {
"collapsed": false
},
"outputs": [],
"cell_type": "code",
"execution_count": null
},
{
"source": [
"\n# Frontpage 3D example\n\n\nThis example reproduces the frontpage 3D example.\n\n\n"
],
"metadata": {},
"cell_type": "markdown"
},
{
"source": [
"from mpl_toolkits.mplot3d import Axes3D\nfrom matplotlib import cbook\nfrom matplotlib import cm\nfrom matplotlib.colors import LightSource\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nfilename = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)\nwith np.load(filename) as dem:\n z = dem['elevation']\n nrows, ncols = z.shape\n x = np.linspace(dem['xmin'], dem['xmax'], ncols)\n y = np.linspace(dem['ymin'], dem['ymax'], nrows)\n x, y = np.meshgrid(x, y)\n\nregion = np.s_[5:50, 5:50]\nx, y, z = x[region], y[region], z[region]\n\nfig, ax = plt.subplots(subplot_kw=dict(projection='3d'))\n\nls = LightSource(270, 45)\n# To use a custom hillshading mode, override the built-in shading and pass\n# in the rgb colors of the shaded surface calculated from \"shade\".\nrgb = ls.shade(z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft')\nsurf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb,\n linewidth=0, antialiased=False, shade=False)\nax.set_xticks([])\nax.set_yticks([])\nax.set_zticks([])\nfig.savefig(\"surface3d_frontpage.png\", dpi=25) # results in 160x120 px image"
],
"metadata": {
"collapsed": false
},
"outputs": [],
"cell_type": "code",
"execution_count": null
}
],
"nbformat": 4,
"nbformat_minor": 0
}
38 changes: 38 additions & 0 deletions _downloads/3D.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
"""
====================
Frontpage 3D example
====================
This example reproduces the frontpage 3D example.
"""
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cbook
from matplotlib import cm
from matplotlib.colors import LightSource
import matplotlib.pyplot as plt
import numpy as np

filename = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)
with np.load(filename) as dem:
z = dem['elevation']
nrows, ncols = z.shape
x = np.linspace(dem['xmin'], dem['xmax'], ncols)
y = np.linspace(dem['ymin'], dem['ymax'], nrows)
x, y = np.meshgrid(x, y)

region = np.s_[5:50, 5:50]
x, y, z = x[region], y[region], z[region]

fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))

ls = LightSource(270, 45)
# To use a custom hillshading mode, override the built-in shading and pass
# in the rgb colors of the shaded surface calculated from "shade".
rgb = ls.shade(z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
fig.savefig("surface3d_frontpage.png", dpi=25) # results in 160x120 px image
54 changes: 54 additions & 0 deletions _downloads/3d_bars.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"source": [
"%matplotlib inline"
],
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Demo of 3D bar charts\n\n\nA basic demo of how to plot 3D bars with and without\nshading.\n\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\nfrom mpl_toolkits.mplot3d import Axes3D\n\n\n# setup the figure and axes\nfig = plt.figure(figsize=(8, 3))\nax1 = fig.add_subplot(121, projection='3d')\nax2 = fig.add_subplot(122, projection='3d')\n\n# fake data\n_x = np.arange(4)\n_y = np.arange(5)\n_xx, _yy = np.meshgrid(_x, _y)\nx, y = _xx.ravel(), _yy.ravel()\n\ntop = x + y\nbottom = np.zeros_like(top)\nwidth = depth = 1\n\nax1.bar3d(x, y, bottom, width, depth, top, shade=True)\nax1.set_title('Shaded')\n\nax2.bar3d(x, y, bottom, width, depth, top, shade=False)\nax2.set_title('Not Shaded')\n\nplt.show()"
],
"outputs": []
}
],
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"version": "3.5.2",
"nbconvert_exporter": "python",
"mimetype": "text/x-python",
"codemirror_mode": {
"version": 3,
"name": "ipython"
},
"file_extension": ".py",
"pygments_lexer": "ipython3",
"name": "python"
}
},
"nbformat": 4
}
37 changes: 37 additions & 0 deletions _downloads/3d_bars.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
"""
=====================
Demo of 3D bar charts
=====================
A basic demo of how to plot 3D bars with and without
shading.
"""

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


# setup the figure and axes
fig = plt.figure(figsize=(8, 3))
ax1 = fig.add_subplot(121, projection='3d')
ax2 = fig.add_subplot(122, projection='3d')

# fake data
_x = np.arange(4)
_y = np.arange(5)
_xx, _yy = np.meshgrid(_x, _y)
x, y = _xx.ravel(), _yy.ravel()

top = x + y
bottom = np.zeros_like(top)
width = depth = 1

ax1.bar3d(x, y, bottom, width, depth, top, shade=True)
ax1.set_title('Shaded')

ax2.bar3d(x, y, bottom, width, depth, top, shade=False)
ax2.set_title('Not Shaded')

plt.show()
54 changes: 54 additions & 0 deletions _downloads/accented_text.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"source": [
"%matplotlib inline"
],
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Using accented text in matplotlib\n\n\nMatplotlib supports accented characters via TeX mathtext or unicode.\n\nUsing mathtext, the following accents are provided: \\hat, \\breve, \\grave, \\bar,\n\\acute, \\tilde, \\vec, \\dot, \\ddot. All of them have the same syntax,\ne.g., to make an overbar you do \\bar{o} or to make an o umlaut you do\n\\ddot{o}. The shortcuts are also provided, e.g.,: \\\"o \\'e \\`e \\~n \\.x\n\\^y\n\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"source": [
"from __future__ import unicode_literals\nimport matplotlib.pyplot as plt\n\n# Mathtext demo\nfig, ax = plt.subplots()\nax.plot(range(10))\nax.set_title(r'$\\ddot{o}\\acute{e}\\grave{e}\\hat{O}'\n r'\\breve{i}\\bar{A}\\tilde{n}\\vec{q}$', fontsize=20)\n\n# Shorthand is also supported and curly braces are optional\nax.set_xlabel(r\"\"\"$\\\"o\\ddot o \\'e\\`e\\~n\\.x\\^y$\"\"\", fontsize=20)\nax.text(4, 0.5, r\"$F=m\\ddot{x}$\")\nfig.tight_layout()\n\n# Unicode demo\nfig, ax = plt.subplots()\nax.set_title(\"GISCARD CHAHUT\u00c9 \u00c0 L'ASSEMBL\u00c9E\")\nax.set_xlabel(\"LE COUP DE D\u00c9 DE DE GAULLE\")\nax.set_ylabel('Andr\u00e9 was here!')\nax.text(0.2, 0.8, 'Institut f\u00fcr Festk\u00f6rperphysik', rotation=45)\nax.text(0.4, 0.2, 'AVA (check kerning)')\n\nplt.show()"
],
"outputs": []
}
],
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"version": "3.5.2",
"nbconvert_exporter": "python",
"mimetype": "text/x-python",
"codemirror_mode": {
"version": 3,
"name": "ipython"
},
"file_extension": ".py",
"pygments_lexer": "ipython3",
"name": "python"
}
},
"nbformat": 4
}
38 changes: 38 additions & 0 deletions _downloads/accented_text.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# -*- coding: utf-8 -*-
r"""
=================================
Using accented text in matplotlib
=================================
Matplotlib supports accented characters via TeX mathtext or unicode.
Using mathtext, the following accents are provided: \hat, \breve, \grave, \bar,
\acute, \tilde, \vec, \dot, \ddot. All of them have the same syntax,
e.g., to make an overbar you do \bar{o} or to make an o umlaut you do
\ddot{o}. The shortcuts are also provided, e.g.,: \"o \'e \`e \~n \.x
\^y
"""
from __future__ import unicode_literals
import matplotlib.pyplot as plt

# Mathtext demo
fig, ax = plt.subplots()
ax.plot(range(10))
ax.set_title(r'$\ddot{o}\acute{e}\grave{e}\hat{O}'
r'\breve{i}\bar{A}\tilde{n}\vec{q}$', fontsize=20)

# Shorthand is also supported and curly braces are optional
ax.set_xlabel(r"""$\"o\ddot o \'e\`e\~n\.x\^y$""", fontsize=20)
ax.text(4, 0.5, r"$F=m\ddot{x}$")
fig.tight_layout()

# Unicode demo
fig, ax = plt.subplots()
ax.set_title("GISCARD CHAHUTÉ À L'ASSEMBLÉE")
ax.set_xlabel("LE COUP DE DÉ DE DE GAULLE")
ax.set_ylabel('André was here!')
ax.text(0.2, 0.8, 'Institut für Festkörperphysik', rotation=45)
ax.text(0.4, 0.2, 'AVA (check kerning)')

plt.show()
Loading

0 comments on commit c1b66f3

Please sign in to comment.