Skip to content

Commit

Permalink
add dataset and dataloader for sample points (#195)
Browse files Browse the repository at this point in the history
* add dataset and dataloader for sample points
* unittests
  • Loading branch information
ndem0 authored Nov 7, 2023
1 parent f9441c0 commit 9353834
Show file tree
Hide file tree
Showing 19 changed files with 582 additions and 197 deletions.
5 changes: 4 additions & 1 deletion pina/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,4 +15,7 @@
from .plotter import Plotter
from .condition import Condition
from .geometry import Location
from .geometry import CartesianDomain
from .geometry import CartesianDomain

from .dataset import SamplePointDataset
from .dataset import SamplePointLoader
3 changes: 2 additions & 1 deletion pina/callbacks/adaptive_refinment_callbacks.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
'''PINA Callbacks Implementations'''

from lightning.pytorch.callbacks import Callback
# from lightning.pytorch.callbacks import Callback
from pytorch_lightning.callbacks import Callback
import torch
from ..utils import check_consistency

Expand Down
2 changes: 1 addition & 1 deletion pina/callbacks/optimizer_callbacks.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
'''PINA Callbacks Implementations'''

from lightning.pytorch.callbacks import Callback
from pytorch_lightning.callbacks import Callback
import torch
from ..utils import check_consistency

Expand Down
296 changes: 229 additions & 67 deletions pina/dataset.py
Original file line number Diff line number Diff line change
@@ -1,78 +1,240 @@
from torch.utils.data import Dataset, DataLoader
import functools
from torch.utils.data import Dataset
import torch
from pina import LabelTensor


class PinaDataset():
class SamplePointDataset(Dataset):
"""
This class is used to create a dataset of sample points.
"""

def __init__(self, pinn) -> None:
self.pinn = pinn
def __init__(self, problem, device) -> None:
"""
:param dict input_pts: The input points.
"""
super().__init__()
pts_list = []
self.condition_names = []

for name, condition in problem.conditions.items():
if not hasattr(condition, 'output_points'):
pts_list.append(problem.input_pts[name])
self.condition_names.append(name)

self.pts = LabelTensor.vstack(pts_list)

if self.pts != []:
self.condition_indeces = torch.cat([
torch.tensor([i]*len(pts_list[i]))
for i in range(len(self.condition_names))
], dim=0)
else: # if there are no sample points
self.condition_indeces = torch.tensor([])
self.pts = torch.tensor([])

self.pts = self.pts.to(device)
self.condition_indeces = self.condition_indeces.to(device)

def __len__(self):
return self.pts.shape[0]


class DataPointDataset(Dataset):

def __init__(self, problem, device) -> None:
super().__init__()
input_list = []
output_list = []
self.condition_names = []

for name, condition in problem.conditions.items():
if hasattr(condition, 'output_points'):
input_list.append(problem.conditions[name].input_points)
output_list.append(problem.conditions[name].output_points)
self.condition_names.append(name)

self.input_pts = LabelTensor.vstack(input_list)
self.output_pts = LabelTensor.vstack(output_list)

if self.input_pts != []:
self.condition_indeces = torch.cat([
torch.tensor([i]*len(input_list[i]))
for i in range(len(self.condition_names))
], dim=0)
else: # if there are no data points
self.condition_indeces = torch.tensor([])
self.input_pts = torch.tensor([])
self.output_pts = torch.tensor([])

self.input_pts = self.input_pts.to(device)
self.output_pts = self.output_pts.to(device)
self.condition_indeces = self.condition_indeces.to(device)

def __len__(self):
return self.input_pts.shape[0]


class SamplePointLoader:
"""
This class is used to create a dataloader to use during the training.
:var condition_names: The names of the conditions. The order is consistent
with the condition indeces in the batches.
:vartype condition_names: list[str]
"""

def __init__(self, sample_dataset, data_dataset, batch_size=None, shuffle=True) -> None:
"""
Constructor.
:param SamplePointDataset sample_pts: The sample points dataset.
:param int batch_size: The batch size. If ``None``, the batch size is
set to the number of sample points. Default is ``None``.
:param bool shuffle: If ``True``, the sample points are shuffled.
Default is ``True``.
"""
if not isinstance(sample_dataset, SamplePointDataset):
raise TypeError(f'Expected SamplePointDataset, got {type(sample_dataset)}')
if not isinstance(data_dataset, DataPointDataset):
raise TypeError(f'Expected DataPointDataset, got {type(data_dataset)}')

self.n_data_conditions = len(data_dataset.condition_names)
self.n_phys_conditions = len(sample_dataset.condition_names)
data_dataset.condition_indeces += self.n_phys_conditions

self._prepare_sample_dataset(sample_dataset, batch_size, shuffle)
self._prepare_data_dataset(data_dataset, batch_size, shuffle)

self.condition_names = (
sample_dataset.condition_names + data_dataset.condition_names)

self.batch_list = []
for i in range(len(self.batch_sample_pts)):
self.batch_list.append(
('sample', i)
)

@property
def dataloader(self):
return self._create_dataloader()
for i in range(len(self.batch_input_pts)):
self.batch_list.append(
('data', i)
)

@property
def dataset(self):
return [self.SampleDataset(key, val)
for key, val in self.input_pts.items()]
if shuffle:
self.random_idx = torch.randperm(len(self.batch_list))
else:
self.random_idx = torch.arange(len(self.batch_list))

def _create_dataloader(self):
"""Private method for creating dataloader

:return: dataloader
:rtype: torch.utils.data.DataLoader
def _prepare_data_dataset(self, dataset, batch_size, shuffle):
"""
if self.pinn.batch_size is None:
return {key: [{key: val}] for key, val in self.pinn.input_pts.items()}

def custom_collate(batch):
# extracting pts labels
_, pts = list(batch[0].items())[0]
labels = pts.labels
# calling default torch collate
collate_res = default_collate(batch)
# save collate result in dict
res = {}
for key, val in collate_res.items():
val.labels = labels
res[key] = val
def __getitem__(self, index):
tensor = self._tensor.select(0, index)
return {self._location: tensor}

def __len__(self):
return self._len



# TODO: working also for datapoints
class DummyLoader:

def __init__(self, data, device) -> None:

# TODO: We need to make a dataset somehow
# and the PINADataset needs to have a method
# to send points to device
# now we simply do it here
# send data to device
def convert_tensors(pts, device):
pts = pts.to(device)
pts.requires_grad_(True)
pts.retain_grad()
return pts

for location, pts in data.items():
if isinstance(pts, (tuple, list)):
pts = tuple(map(functools.partial(convert_tensors, device=device),pts))
else:
pts = pts.to(device)
pts = pts.requires_grad_(True)
pts.retain_grad()

data[location] = pts
Prepare the dataset for data points.
# iterator
self.data = [data]
:param SamplePointDataset dataset: The dataset.
:param int batch_size: The batch size.
:param bool shuffle: If ``True``, the sample points are shuffled.
"""
self.sample_dataset = dataset

if len(dataset) == 0:
self.batch_data_conditions = []
self.batch_input_pts = []
self.batch_output_pts = []
return

if batch_size is None:
batch_size = len(dataset)
batch_num = len(dataset) // batch_size
if len(dataset) % batch_size != 0:
batch_num += 1

output_labels = dataset.output_pts.labels
input_labels = dataset.input_pts.labels
self.tensor_conditions = dataset.condition_indeces

if shuffle:
idx = torch.randperm(dataset.input_pts.shape[0])
self.input_pts = dataset.input_pts[idx]
self.output_pts = dataset.output_pts[idx]
self.tensor_conditions = dataset.condition_indeces[idx]

self.batch_input_pts = torch.tensor_split(
dataset.input_pts, batch_num)
self.batch_output_pts = torch.tensor_split(
dataset.output_pts, batch_num)

for i in range(len(self.batch_input_pts)):
self.batch_input_pts[i].labels = input_labels
self.batch_output_pts[i].labels = output_labels

self.batch_data_conditions = torch.tensor_split(
self.tensor_conditions, batch_num)

def _prepare_sample_dataset(self, dataset, batch_size, shuffle):
"""
Prepare the dataset for sample points.
:param DataPointDataset dataset: The dataset.
:param int batch_size: The batch size.
:param bool shuffle: If ``True``, the sample points are shuffled.
"""

self.sample_dataset = dataset
if len(dataset) == 0:
self.batch_sample_conditions = []
self.batch_sample_pts = []
return

if batch_size is None:
batch_size = len(dataset)

batch_num = len(dataset) // batch_size
if len(dataset) % batch_size != 0:
batch_num += 1

self.tensor_pts = dataset.pts
self.tensor_conditions = dataset.condition_indeces

# if shuffle:
# idx = torch.randperm(self.tensor_pts.shape[0])
# self.tensor_pts = self.tensor_pts[idx]
# self.tensor_conditions = self.tensor_conditions[idx]

self.batch_sample_pts = torch.tensor_split(self.tensor_pts, batch_num)
for i in range(len(self.batch_sample_pts)):
self.batch_sample_pts[i].labels = dataset.pts.labels

self.batch_sample_conditions = torch.tensor_split(
self.tensor_conditions, batch_num)

def __iter__(self):
return iter(self.data)
"""
Return an iterator over the points. Any element of the iterator is a
dictionary with the following keys:
- ``pts``: The input sample points. It is a LabelTensor with the
shape ``(batch_size, input_dimension)``.
- ``output``: The output sample points. This key is present only
if data conditions are present. It is a LabelTensor with the
shape ``(batch_size, output_dimension)``.
- ``condition``: The integer condition indeces. It is a tensor
with the shape ``(batch_size, )`` of type ``torch.int64`` and
indicates for any ``pts`` the corresponding problem condition.
:return: An iterator over the points.
:rtype: iter
"""
#for i in self.random_idx:
for i in range(len(self.batch_list)):
type_, idx_ = self.batch_list[i]

if type_ == 'sample':
d = {
'pts': self.batch_sample_pts[idx_].requires_grad_(True),
'condition': self.batch_sample_conditions[idx_],
}
else:
d = {
'pts': self.batch_input_pts[idx_].requires_grad_(True),
'output': self.batch_output_pts[idx_],
'condition': self.batch_data_conditions[idx_],
}
yield d
16 changes: 9 additions & 7 deletions pina/geometry/simplex.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,13 +55,15 @@ def __init__(self, simplex_matrix, sample_surface=False):
raise ValueError("An n-dimensional simplex is composed by n + 1 tensors of dimension n.")

# creating vertices matrix
self._vertices_matrix = torch.cat(simplex_matrix)
self._vertices_matrix.labels = matrix_labels
self._vertices_matrix = LabelTensor.vstack(simplex_matrix)

# creating basis vectors for simplex
self._vectors_shifted = (
(self._vertices_matrix.T)[:, :-1] - (self._vertices_matrix.T)[:, None, -1]
)
# self._vectors_shifted = (
# (self._vertices_matrix.T)[:, :-1] - (self._vertices_matrix.T)[:, None, -1]
# ) ### TODO: Remove after checking

vert = self._vertices_matrix
self._vectors_shifted = (vert[:-1] - vert[-1]).T

# build cartesian_bound
self._cartesian_bound = self._build_cartesian(self._vertices_matrix)
Expand Down Expand Up @@ -114,8 +116,8 @@ def is_inside(self, point, check_border=False):
f" expected {self.variables}."
)

# shift point
point_shift = point.T - (self._vertices_matrix.T)[:, None, -1]
point_shift = point - self._vertices_matrix[-1]
point_shift = point_shift.tensor.reshape(-1, 1)

# compute barycentric coordinates
lambda_ = torch.linalg.solve(self._vectors_shifted * 1.0, point_shift * 1.0)
Expand Down
Loading

0 comments on commit 9353834

Please sign in to comment.