Skip to content

Commit

Permalink
Fixed exception for case when Hybrid query being wrapped into bool qu…
Browse files Browse the repository at this point in the history
…ery (opensearch-project#490) (opensearch-project#496)

* Adding null check for case when hybrid query wrapped into bool query

(cherry picked from commit b3c73bd)

Signed-off-by: Martin Gaievski <[email protected]>
  • Loading branch information
martin-gaievski authored Nov 21, 2023
1 parent a430c6d commit ef19ffa
Show file tree
Hide file tree
Showing 5 changed files with 130 additions and 25 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
### Features
### Enhancements
### Bug Fixes
Fixed exception for case when Hybrid query being wrapped into bool query ([#490](https://github.com/opensearch-project/neural-search/pull/490)
### Infrastructure
### Documentation
### Maintenance
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ public DocIdSetIterator iterator() {
*/
@Override
public float getMaxScore(int upTo) throws IOException {
return subScorers.stream().filter(scorer -> scorer.docID() <= upTo).map(scorer -> {
return subScorers.stream().filter(Objects::nonNull).filter(scorer -> scorer.docID() <= upTo).map(scorer -> {
try {
return scorer.getMaxScore(upTo);
} catch (IOException e) {
Expand Down
88 changes: 66 additions & 22 deletions src/test/java/org/opensearch/neuralsearch/query/HybridQueryIT.java
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
import org.junit.After;
import org.junit.Before;
import org.opensearch.index.query.BoolQueryBuilder;
import org.opensearch.index.query.MatchQueryBuilder;
import org.opensearch.index.query.QueryBuilders;
import org.opensearch.index.query.TermQueryBuilder;
import org.opensearch.knn.index.SpaceType;
Expand All @@ -33,6 +34,7 @@ public class HybridQueryIT extends BaseNeuralSearchIT {
private static final String TEST_BASIC_INDEX_NAME = "test-neural-basic-index";
private static final String TEST_BASIC_VECTOR_DOC_FIELD_INDEX_NAME = "test-neural-vector-doc-field-index";
private static final String TEST_MULTI_DOC_INDEX_NAME = "test-neural-multi-doc-index";
private static final String TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD = "test-neural-multi-doc-single-shard-index";
private static final String TEST_QUERY_TEXT = "greetings";
private static final String TEST_QUERY_TEXT2 = "salute";
private static final String TEST_QUERY_TEXT3 = "hello";
Expand Down Expand Up @@ -188,6 +190,35 @@ public void testNoMatchResults_whenOnlyTermSubQueryWithoutMatch_thenEmptyResult(
assertEquals(RELATION_EQUAL_TO, total.get("relation"));
}

@SneakyThrows
public void testNestedQuery_whenHybridQueryIsWrappedIntoOtherQuery_thenSuccess() {
initializeIndexIfNotExist(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD);

MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3);
MatchQueryBuilder matchQuery2Builder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT4);
HybridQueryBuilder hybridQueryBuilderOnlyTerm = new HybridQueryBuilder();
hybridQueryBuilderOnlyTerm.add(matchQueryBuilder);
hybridQueryBuilderOnlyTerm.add(matchQuery2Builder);
MatchQueryBuilder matchQuery3Builder = QueryBuilders.matchQuery(TEST_TEXT_FIELD_NAME_1, TEST_QUERY_TEXT3);
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery().should(hybridQueryBuilderOnlyTerm).should(matchQuery3Builder);

Map<String, Object> searchResponseAsMap = search(
TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD,
boolQueryBuilder,
null,
10,
Map.of("search_pipeline", SEARCH_PIPELINE)
);

assertTrue(getHitCount(searchResponseAsMap) > 0);
assertTrue(getMaxScore(searchResponseAsMap).isPresent());
assertTrue(getMaxScore(searchResponseAsMap).get() > 0.0f);

Map<String, Object> total = getTotalHits(searchResponseAsMap);
assertNotNull(total.get("value"));
assertTrue((int) total.get("value") > 0);
}

private void initializeIndexIfNotExist(String indexName) throws IOException {
if (TEST_BASIC_INDEX_NAME.equals(indexName) && !indexExists(TEST_BASIC_INDEX_NAME)) {
prepareKnnIndex(
Expand Down Expand Up @@ -242,32 +273,45 @@ private void initializeIndexIfNotExist(String indexName) throws IOException {
TEST_MULTI_DOC_INDEX_NAME,
Collections.singletonList(new KNNFieldConfig(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DIMENSION, TEST_SPACE_TYPE))
);
addKnnDoc(
TEST_MULTI_DOC_INDEX_NAME,
"1",
Collections.singletonList(TEST_KNN_VECTOR_FIELD_NAME_1),
Collections.singletonList(Floats.asList(testVector1).toArray()),
Collections.singletonList(TEST_TEXT_FIELD_NAME_1),
Collections.singletonList(TEST_DOC_TEXT1)
);
addKnnDoc(
TEST_MULTI_DOC_INDEX_NAME,
"2",
Collections.singletonList(TEST_KNN_VECTOR_FIELD_NAME_1),
Collections.singletonList(Floats.asList(testVector2).toArray())
);
addKnnDoc(
TEST_MULTI_DOC_INDEX_NAME,
"3",
Collections.singletonList(TEST_KNN_VECTOR_FIELD_NAME_1),
Collections.singletonList(Floats.asList(testVector3).toArray()),
Collections.singletonList(TEST_TEXT_FIELD_NAME_1),
Collections.singletonList(TEST_DOC_TEXT2)
addDocsToIndex(TEST_MULTI_DOC_INDEX_NAME);
}

if (TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD.equals(indexName) && !indexExists(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD)) {
prepareKnnIndex(
TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD,
Collections.singletonList(new KNNFieldConfig(TEST_KNN_VECTOR_FIELD_NAME_1, TEST_DIMENSION, TEST_SPACE_TYPE)),
1
);
assertEquals(3, getDocCount(TEST_MULTI_DOC_INDEX_NAME));
addDocsToIndex(TEST_MULTI_DOC_INDEX_NAME_ONE_SHARD);
}
}

private void addDocsToIndex(final String testMultiDocIndexName) {
addKnnDoc(
testMultiDocIndexName,
"1",
Collections.singletonList(TEST_KNN_VECTOR_FIELD_NAME_1),
Collections.singletonList(Floats.asList(testVector1).toArray()),
Collections.singletonList(TEST_TEXT_FIELD_NAME_1),
Collections.singletonList(TEST_DOC_TEXT1)
);
addKnnDoc(
testMultiDocIndexName,
"2",
Collections.singletonList(TEST_KNN_VECTOR_FIELD_NAME_1),
Collections.singletonList(Floats.asList(testVector2).toArray())
);
addKnnDoc(
testMultiDocIndexName,
"3",
Collections.singletonList(TEST_KNN_VECTOR_FIELD_NAME_1),
Collections.singletonList(Floats.asList(testVector3).toArray()),
Collections.singletonList(TEST_TEXT_FIELD_NAME_1),
Collections.singletonList(TEST_DOC_TEXT2)
);
assertEquals(3, getDocCount(testMultiDocIndexName));
}

private List<Map<String, Object>> getNestedHits(Map<String, Object> searchResponseAsMap) {
Map<String, Object> hitsMap = (Map<String, Object>) searchResponseAsMap.get("hits");
return (List<Map<String, Object>>) hitsMap.get("hits");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@
package org.opensearch.neuralsearch.query;

import static org.apache.lucene.search.DocIdSetIterator.NO_MORE_DOCS;
import static org.mockito.ArgumentMatchers.anyInt;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;

import java.io.IOException;
import java.util.Arrays;
Expand All @@ -21,6 +23,7 @@
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.MatchAllDocsQuery;
import org.apache.lucene.search.MatchNoDocsQuery;
import org.apache.lucene.search.Scorer;
import org.apache.lucene.search.Weight;
import org.apache.lucene.tests.util.TestUtil;

Expand Down Expand Up @@ -169,6 +172,63 @@ public void testWithRandomDocuments_whenMultipleScorersAndSomeScorersEmpty_thenR
testWithQuery(docs, scores, hybridQueryScorer);
}

@SneakyThrows
public void testMaxScore_whenMultipleScorers_thenSuccessful() {
int maxDocId = TestUtil.nextInt(random(), 10, 10_000);
Pair<int[], float[]> docsAndScores = generateDocuments(maxDocId);
int[] docs = docsAndScores.getLeft();
float[] scores = docsAndScores.getRight();

Weight weight = mock(Weight.class);

HybridQueryScorer hybridQueryScorerWithAllNonNullSubScorers = new HybridQueryScorer(
weight,
Arrays.asList(
scorer(docs, scores, fakeWeight(new MatchAllDocsQuery())),
scorer(docs, scores, fakeWeight(new MatchNoDocsQuery()))
)
);

float maxScore = hybridQueryScorerWithAllNonNullSubScorers.getMaxScore(Integer.MAX_VALUE);
assertTrue(maxScore > 0.0f);

HybridQueryScorer hybridQueryScorerWithSomeNullSubScorers = new HybridQueryScorer(
weight,
Arrays.asList(null, scorer(docs, scores, fakeWeight(new MatchAllDocsQuery())), null)
);

maxScore = hybridQueryScorerWithSomeNullSubScorers.getMaxScore(Integer.MAX_VALUE);
assertTrue(maxScore > 0.0f);

HybridQueryScorer hybridQueryScorerWithAllNullSubScorers = new HybridQueryScorer(weight, Arrays.asList(null, null));

maxScore = hybridQueryScorerWithAllNullSubScorers.getMaxScore(Integer.MAX_VALUE);
assertEquals(0.0f, maxScore, 0.0f);
}

@SneakyThrows
public void testMaxScoreFailures_whenScorerThrowsException_thenFail() {
int maxDocId = TestUtil.nextInt(random(), 10, 10_000);
Pair<int[], float[]> docsAndScores = generateDocuments(maxDocId);
int[] docs = docsAndScores.getLeft();
float[] scores = docsAndScores.getRight();

Weight weight = mock(Weight.class);

Scorer scorer = mock(Scorer.class);
when(scorer.getWeight()).thenReturn(fakeWeight(new MatchAllDocsQuery()));
when(scorer.iterator()).thenReturn(iterator(docs));
when(scorer.getMaxScore(anyInt())).thenThrow(new IOException("Test exception"));

HybridQueryScorer hybridQueryScorerWithAllNonNullSubScorers = new HybridQueryScorer(weight, Arrays.asList(scorer));

RuntimeException runtimeException = expectThrows(
RuntimeException.class,
() -> hybridQueryScorerWithAllNonNullSubScorers.getMaxScore(Integer.MAX_VALUE)
);
assertTrue(runtimeException.getMessage().contains("Test exception"));
}

private Pair<int[], float[]> generateDocuments(int maxDocId) {
final int numDocs = RandomizedTest.randomIntBetween(1, maxDocId / 2);
final int[] docs = new int[numDocs];
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -61,11 +61,11 @@ public void testScorerIterator_whenExecuteQuery_thenScorerIteratorSuccessful() {
List.of(QueryBuilders.termQuery(TEXT_FIELD_NAME, TERM_QUERY_TEXT).toQuery(mockQueryShardContext))
);
IndexSearcher searcher = newSearcher(reader);
Weight weight = searcher.createWeight(hybridQueryWithTerm, ScoreMode.COMPLETE, 1.0f);
Weight weight = hybridQueryWithTerm.createWeight(searcher, ScoreMode.TOP_SCORES, 1.0f);

assertNotNull(weight);

LeafReaderContext leafReaderContext = reader.getContext().leaves().get(0);
LeafReaderContext leafReaderContext = searcher.getIndexReader().leaves().get(0);
Scorer scorer = weight.scorer(leafReaderContext);

assertNotNull(scorer);
Expand Down

0 comments on commit ef19ffa

Please sign in to comment.