-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
196 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# MEMM project: NaCL umbrella sampling" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%matplotlib inline\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import matplotlib as mpl\n", | ||
"import numpy as np\n", | ||
"import pyemma\n", | ||
"import mdshare\n", | ||
"\n", | ||
"mpl.rcParams.update({'font.size': 14})" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Now it is your turn. Below you will find a dataset of a Na-Cl-dimer in TiP3P water; the dataset includes Na-Cl-distance timeseries from NN biased simulations which incrementally pull the ions apart and 20 unbiased simulations started at a Na-Cl-distance of approximately 3.5 Angstrom. The umbrella sampling parameters and the kT value are also given.\n", | ||
"\n", | ||
"All distances in the dataset are in Angstrom, energies in kcal/mol, and the trajectory timestep is 1 ps." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"with np.load(mdshare.load('pyemma-tutorial-us-nacl.npz', working_directory='data')) as fh:\n", | ||
" us_trajs = [fh['us_traj_%03d' % i] for i in range(60)]\n", | ||
" us_centers = fh['us_centers'].tolist()\n", | ||
" us_force_constants = fh['us_force_constants'].tolist()\n", | ||
" md_trajs = [fh['md_traj_%03d' % i] for i in range(20)]\n", | ||
" kT = float(fh['kT'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Step 1\n", | ||
"\n", | ||
"You can experiment with visualizations of the raw data or jump straight into the discretization." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# FIXME" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Step 2\n", | ||
"Try to apply WHAM to get a quick estimate of the stationary properties of the system. Try only the biased data or use both biased and unbiased." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# FIXME" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Step 3\n", | ||
"Now apply DTRAM and estimate the kinetic properties of the system. Remember: kinetics require unbiased data!" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# FIXME" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Step 4\n", | ||
"We have unbiased data, so let's build a regular MSM and compare with the MEMM results." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# FIXME" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |