Skip to content

Commit

Permalink
adding MEMM project notebook
Browse files Browse the repository at this point in the history
  • Loading branch information
cwehmeyer committed Feb 21, 2018
1 parent 2dcdfde commit 3466c26
Showing 1 changed file with 196 additions and 0 deletions.
196 changes: 196 additions & 0 deletions notebooks/MEMM_05_project.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MEMM project: NaCL umbrella sampling"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"import numpy as np\n",
"import pyemma\n",
"import mdshare\n",
"\n",
"mpl.rcParams.update({'font.size': 14})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now it is your turn. Below you will find a dataset of a Na-Cl-dimer in TiP3P water; the dataset includes Na-Cl-distance timeseries from NN biased simulations which incrementally pull the ions apart and 20 unbiased simulations started at a Na-Cl-distance of approximately 3.5 Angstrom. The umbrella sampling parameters and the kT value are also given.\n",
"\n",
"All distances in the dataset are in Angstrom, energies in kcal/mol, and the trajectory timestep is 1 ps."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"with np.load(mdshare.load('pyemma-tutorial-us-nacl.npz', working_directory='data')) as fh:\n",
" us_trajs = [fh['us_traj_%03d' % i] for i in range(60)]\n",
" us_centers = fh['us_centers'].tolist()\n",
" us_force_constants = fh['us_force_constants'].tolist()\n",
" md_trajs = [fh['md_traj_%03d' % i] for i in range(20)]\n",
" kT = float(fh['kT'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 1\n",
"\n",
"You can experiment with visualizations of the raw data or jump straight into the discretization."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# FIXME"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2\n",
"Try to apply WHAM to get a quick estimate of the stationary properties of the system. Try only the biased data or use both biased and unbiased."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# FIXME"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 3\n",
"Now apply DTRAM and estimate the kinetic properties of the system. Remember: kinetics require unbiased data!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# FIXME"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 4\n",
"We have unbiased data, so let's build a regular MSM and compare with the MEMM results."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# FIXME"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit 3466c26

Please sign in to comment.