Skip to content

Keras like implementation of Deep Learning architectures from scratch using numpy.

Notifications You must be signed in to change notification settings

manupillai308/Mini-Keras

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mini-Keras

Keras like implementation of Deep Learning architectures from scratch using numpy.

How to contribute?

The project contains implementations for various activation functions, layers, loss functions, model structures and optimizers in files activation.py, layer.py, loss.py, model.py and optimizer.py respectively.

Given below is list of available implementations (which may or may not require any improvements).

Activation Functions Status
Sigmoid Available
ReLU Required
Softmax Required
Layer Status
Dense Available
Conv2D Available
MaxPool2D Available
Flatten Available
BasicRNN Required
Loss Function Status
BinaryCrossEntropy Available
CategoricalCrossEntropy Required
Model Structure Status
Sequential Available
Optimizer Status
GradientDescentOptimizer Available
AdamOptimizer Required
AdaGradOptimizer Required
GradientDescentOptimizer (with Nesterov) Required

Each of the implementations are class-based and follows a keras like structure. A typical model training with Mini-Keras looks like this,

from model import Sequential
from layer import Dense, Conv2D, MaxPool2D, Flatten
from loss import BinaryCrossEntropy
from activation import Sigmoid
from optimizer import GradientDescentOptimizer

model = Sequential()
model.add(Conv2D, ksize=3, stride=1, activation=Sigmoid(), input_size=(8,8,1), filters=1, padding=0)
model.add(MaxPool2D, ksize=2, stride=1, padding=0)
model.add(Conv2D, ksize=2, stride=1, activation=Sigmoid(), filters=1, padding=0)
model.add(Flatten)
model.add(Dense, units=1, activation=Sigmoid())
model.summary()

model.compile(BinaryCrossEntropy())

print("Initial Loss", model.evaluate(X, y)[0])
model.fit(X, y, n_epochs=100, batch_size=300, learning_rate=0.003, optimizer=GradientDescentOptimizer(), verbose=1)
print("Final Loss", model.evaluate(X, y)[0])

As you might have noticed, its very similar to how one will do it in Keras.

Testing new functionalities

The run.py consists of a small code snippet that can be used to test if your new implementation is working properly or not.

Implementation Details

All the implementations have a forward propagation and a backward propagation equivalent available as a method in the corresponding class. Below are the details for implementing all the functionalities under different categories.

README.ipynb explains each of the implementations with mathematical proofs for better understanding.

About

Keras like implementation of Deep Learning architectures from scratch using numpy.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages