This library give support for:
- Access to rec-sys via database repositories.
- Access to rec-sys REST API to config and update recommenders data.
- Jobs: Used to build and config similarity matrix (user-user / item-item) required by rec-sys recommenders.
- anaconda / miniconda / mamba (Recommended)
- mariadb/mysql
Step 1: First Import src
directory into python class path:
import sys
sys.path.append('./src')
Step 2: Import DomainContext
class. DomainContext
is a python class that build and config all services required to interact with rec-sys via REST API or Database Client. DomainContext
can be seen as a facade
pattern.
from recsys.domain_context import DomainContext
ctx = DomainContext()
Step 3: Access to a REST API client
api_client = ctx.api
# Get user interactions
api_client.interacitons()
See api.recsys.RecSysApi for more detail.
Step 3: Execute a job.
ctx.bert_item_distance_matrix_job('all-mpnet-base-v2').execute()
ctx.svd_distance_matrix_job.execute()
ctx.nmf_distance_matrix_job.execute()
See job for more detail.
Step 4: Also could run jobs from bash.
$ conda activate recsys-client-side
$ python bin/svd_distance_matrix_job.py
$ python bin/nmf_distance_matrix_job.py
$ python bin/all_minilm_l12_v2_bert_item_distance_matrix_job.py
$ python bin/all_mpnet_base_v2_bert_item_distance_matrix_job.py
$ python bin/all_minilm_l6_v2_bert_item_distance_matrix_job.py
$ python bin/multi_qa_mpnet_base_dot_v1_bert_item_distance_matrix_job.py
Go to rec-sys-client-side Documentation.
Go to rec-sys WIKI for model project details.