-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added sample to demonstrate SparseMatrix extensions. (#1044)
- Loading branch information
Showing
3 changed files
with
219 additions
and
0 deletions.
There are no files selected for viewing
17 changes: 17 additions & 0 deletions
17
Samples/AlgorithmsSparseMatrix/AlgorithmsSparseMatrix.csproj
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
<Project Sdk="Microsoft.NET.Sdk"> | ||
<PropertyGroup> | ||
<TargetFrameworks>$(LibrarySamplesTargetFrameworks)</TargetFrameworks> | ||
<OutputType>Exe</OutputType> | ||
<LangVersion>8.0</LangVersion> | ||
</PropertyGroup> | ||
|
||
<PropertyGroup> | ||
<EnableNETAnalyzers>true</EnableNETAnalyzers> | ||
<AnalysisMode>AllEnabledByDefault</AnalysisMode> | ||
</PropertyGroup> | ||
|
||
<ItemGroup> | ||
<ProjectReference Include="..\..\Src\ILGPU\ILGPU.csproj" /> | ||
<ProjectReference Include="..\..\Src\ILGPU.Algorithms\ILGPU.Algorithms.csproj" /> | ||
</ItemGroup> | ||
</Project> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
// --------------------------------------------------------------------------------------- | ||
// ILGPU Samples | ||
// Copyright (c) 2023 ILGPU Project | ||
// www.ilgpu.net | ||
// | ||
// File: Program.cs | ||
// | ||
// This file is part of ILGPU and is distributed under the University of Illinois Open | ||
// Source License. See LICENSE.txt for details. | ||
// --------------------------------------------------------------------------------------- | ||
|
||
using ILGPU; | ||
using ILGPU.Algorithms; | ||
using ILGPU.Algorithms.MatrixOperations; | ||
using ILGPU.Runtime; | ||
using System; | ||
|
||
#pragma warning disable CA5394 // Insecure RNG | ||
|
||
namespace AlgorithmsSparseMatrix | ||
{ | ||
#if NET6_0_OR_GREATER | ||
class Program | ||
{ | ||
/// <summary> | ||
/// Converts the given dense matrix into its sparse form. | ||
/// </summary> | ||
static SparseMatrixView<float, Stride2D.General> Sparsify( | ||
Random random, | ||
Accelerator accelerator, | ||
int length) | ||
{ | ||
// Setup a sparse 2D matrix | ||
var matrix = new float[length, length]; | ||
|
||
// Fill sparse matrix | ||
for (int i = 0; i < matrix.GetLength(0); ++i) | ||
{ | ||
for (int j = 0; j < matrix.GetLength(1); ++j) | ||
{ | ||
// Create a sparse matrix with 5% sparse elements in this sample | ||
matrix[i, j] = random.NextSingle() > 0.05f | ||
? 0.0f | ||
: random.NextSingle() * 10.0f; | ||
} | ||
} | ||
|
||
// Allocate basic matrix on the accelerator and transfer it to the device | ||
using var matrixBuffer = accelerator.Allocate2DDenseY<float>(matrix.GetExtent()); | ||
matrixBuffer.View.CopyFromCPU(matrix); | ||
|
||
// Allocate a temp buffer (or use existing memory from somewhere else) | ||
using var tempBuffer = accelerator.Allocate1D<int>(1); | ||
|
||
// Initialize the basic shape converter and data converters | ||
var shapeConverter = accelerator.CreateSparseMatrixShapeConverter< | ||
float, | ||
FloatEpsPredicate<Stride2D.General>, | ||
Stride2D.General>(tempBuffer.View); | ||
var converter = accelerator.CreateSparseMatrixConverter<float, Stride2D.General>(); | ||
|
||
// Get basic shape of the sparse matrix living on the device which contains all required | ||
// dimension information and the actual sparse lookup table for efficient processing | ||
// the matrix elements later on | ||
var numNeighborsBuffer = accelerator.Allocate1D<int>(matrix.GetLength(0)); | ||
var shapeView = shapeConverter( | ||
accelerator.DefaultStream, | ||
matrixBuffer.View.AsGeneral(), | ||
new FloatEpsPredicate<Stride2D.General>( | ||
matrixBuffer.View.AsGeneral(), | ||
0.0f), | ||
numNeighborsBuffer.View, | ||
maxNumNeighbors => | ||
{ | ||
// The maximum number of neighbors per row is available at this point and we just | ||
// allocate a buffer here for demonstration purposes. In practice, this can be | ||
// the creation of a subview from an existing buffer. | ||
return accelerator.Allocate2DDenseY<int>( | ||
(matrix.GetLength(0), maxNumNeighbors)) | ||
.View.AsGeneral(); | ||
}); | ||
|
||
// Allocate the actual sparse data buffer for our result | ||
var sparseMatrixBuffer = accelerator.Allocate2DDenseY<float>( | ||
(matrix.GetLength(0), shapeView.Neighbors.Extent.Y)); | ||
|
||
// Convert data and fill our sparse matrix structure | ||
var sparseView = converter(accelerator.DefaultStream, matrixBuffer.View.AsGeneral(), | ||
shapeView, sparseMatrixBuffer.View.AsGeneral()); | ||
|
||
// !!! Note that we *do not* dispose buffers here to keep them alive in the related | ||
// views for the sake of simplicity. Please always make sure to dispose buffers | ||
// properly in production code !!! | ||
|
||
// Sparse view now contains all required data elements | ||
return sparseView; | ||
} | ||
|
||
/// <summary> | ||
/// Multiplies the given dense matrix and the sparse matrix efficiently on the GPU, | ||
/// while transposing the sparse matrix on the fly. | ||
/// </summary> | ||
static void MultiplySparseTransposed( | ||
Accelerator accelerator, | ||
float[,] denseMatrix, | ||
SparseMatrixView<float, Stride2D.General> sparseView) | ||
{ | ||
// As mentioned above, the integrated sparse-matrix processor allows multiplying | ||
// the dense matrix with the sparse one while transposing the latter one. | ||
// However, it also allows to specify which values we are interested in and | ||
// ignoring all other values. For this purpose, we can use specialized predicates, | ||
// of which several are already predefined and available. In this sample, we use | ||
// a predicate that operates on a dense matrix to test whether the values are above | ||
// a certain threshold. If yes, the corresponding matrix element in the result | ||
// matrix will be computed. | ||
|
||
var maskMatrix = new float[denseMatrix.GetLength(0), denseMatrix.GetLength(1)]; | ||
for (int i = 0; i < maskMatrix.GetLength(0); ++i) | ||
{ | ||
for (int j = 0; j < maskMatrix.GetLength(1); ++j) | ||
maskMatrix[i, j] = 1.0f; // Use your own values to avoid computing result elements | ||
} | ||
|
||
// Allocate dense output matrix | ||
using var aMatrixBuffer = accelerator.Allocate2DDenseY(denseMatrix); | ||
using var pMatrixBuffer = accelerator.Allocate2DDenseY(maskMatrix); | ||
using var outBuffer = accelerator.Allocate2DDenseY<float>(denseMatrix.GetExtent()); | ||
|
||
// Create a single-streamed sparse matrix processor to multiply our matrix instances | ||
// as efficiently as possible | ||
var processor = accelerator.CreateSparseTransposedMatrixMultiplierMasked< | ||
float, | ||
FloatEpsPredicate<Stride2D.General>, | ||
Stride2D.General, | ||
FloatMaskedSparseMatrixProcessor>(); | ||
|
||
// Multiply a single masked sparse matrix | ||
processor( | ||
accelerator.DefaultStream, | ||
new FloatEpsPredicate<Stride2D.General>(pMatrixBuffer.View.AsGeneral(), 0.0f), | ||
aMatrixBuffer.View.AsGeneral(), | ||
sparseView, | ||
outBuffer.View.AsGeneral()); | ||
|
||
// The outBuffer contains the multiplication result | ||
} | ||
|
||
static void Main() | ||
{ | ||
// Get a new ILGPU context | ||
using var context = | ||
Context.Create(builder => builder.Default().EnableAlgorithms()); | ||
|
||
// Create a new RNG on the CPU side | ||
var random = new Random(); | ||
|
||
const int lengthA = 288; | ||
const int lengthB = 376; | ||
|
||
// For each available device... | ||
foreach (var device in context) | ||
{ | ||
// Create the associated accelerator | ||
using var accelerator = device.CreateAccelerator(context); | ||
Console.WriteLine($"Performing operations on {accelerator}"); | ||
|
||
// Create a new dense matrix on the CPU and let it be sparsified on the GPU | ||
var sparseMatrixView = Sparsify(random, accelerator, lengthB); | ||
|
||
// Now, use the sparse matrix and multiply it efficiently with the given dense one | ||
var denseMatrix = new float[lengthA, lengthB]; | ||
for (int i = 0; i < denseMatrix.GetLength(0); ++i) | ||
{ | ||
for (int j = 0; j < denseMatrix.GetLength(1); ++j) | ||
denseMatrix[i, j] = random.NextSingle(); | ||
} | ||
|
||
// Note that this sample method demonstrates the use of a specialized operation: | ||
// A * B^T, where B is considered a huger sparse matrix | ||
MultiplySparseTransposed(accelerator, denseMatrix, sparseMatrixView); | ||
} | ||
} | ||
} | ||
#else | ||
class Program | ||
{ | ||
static void Main() | ||
{ | ||
Console.WriteLine("Cannot use this sample on frameworks prior to .Net6.0"); | ||
} | ||
} | ||
#endif | ||
} | ||
|
||
#pragma warning restore CA5394 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters