Skip to content

lztjy/LCNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lightweight Context-Aware Network Using Partial-Channel Transformation for Real-Time Semantic Segmentation

Lightweight Context-Aware Network Using Partial-Channel Transformation for Real-Time Semantic Segmentation














Segmentation performance of LCNet

S1 S2 Crop Size* Dataset Pretrained Train type mIoU Params Speed Location
3 7 512,1024 Cityscapes No trainval 73.3 0.51 185 -
3 7 1024,1024 Cityscapes No trainval 73.8 0.51 142 -
3 11 512,1024 Cityscapes No trainval 74.3 0.74 136 -
3 11 1024,1024 Cityscapes No train 75.6 0.74 117 -
3 11 1024,1024 Cityscapes No trainval 75.8 0.74 117 -

* Represents the resolution of the input image cropping in the training phase.

Preparation

You need to download the Cityscapes and CamVid datasets and place the symbolic links or datasets of the Cityscapes and CamVid datasets in the dataset directory. Our file directory is consistent with DABNet (https://github.com/Reagan1311/DABNet).

dataset
  ├── camvid
  |    ├── train
  |    ├── test
  |    ├── val 
  |    ├── trainannot
  |    ├── testannot
  |    ├── valannot
  |    ├── camvid_trainval_list.txt
  |    ├── camvid_train_list.txt
  |    ├── camvid_test_list.txt
  |    └── camvid_val_list.txt
  ├── cityscapes
  |    ├── gtCoarse
  |    ├── gtFine
  |    ├── leftImg8bit
  |    ├── cityscapes_trainval_list.txt
  |    ├── cityscapes_train_list.txt
  |    ├── cityscapes_test_list.txt
  |    └── cityscapes_val_list.txt           

How to run

1 Training

1.1 Cityscapes

python train.py

1.2 CamVid

python train.py --dataset camvid --train_type trainval --max_epochs 1000 --lr 1e-3 --input_size 360,480

2 Testing

python test.py --dataset ${camvid, cityscapes} --checkpoint ${CHECKPOINT_FILE}

2.1 Cityscapes

python test.py --dataset cityscapes --checkpoint "./checkpoints/LCNet_3_11_1024_train.pth"

To convert the training lables to class lables.

python trainID2labelID.py Package the file into xxx.zip Submit the zip file to https://www.cityscapes-dataset.com/submit/. You can get the results from the https://www.cityscapes-dataset.com/submit/.

2.2 CamVid

python test.py --dataset camvid --checkpoint ${CHECKPOINT_FILE}

3. fps

python eval_forward_time.py --size 512,1024

Citation

@ARTICLE{
  10411824,
  author={Shi, Min and Lin, Shaowen and Yi, Qingming and Weng, Jian and Luo, Aiwen and Zhou, Yicong},
  journal={IEEE Transactions on Intelligent Transportation Systems},
  title={Lightweight Context-Aware Network Using Partial-Channel Transformation for Real-Time Semantic Segmentation},
  year={2024},
  volume={},
  number={},
  pages={1-16}
}

Reference

https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks

https://github.com/Reagan1311/DABNet

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages