-
-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
96f66d2
commit bca88e9
Showing
2 changed files
with
172 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
from packaging import version | ||
from collections import namedtuple | ||
|
||
import torch | ||
from torch import nn | ||
import torch.nn.functional as F | ||
from torch.nn import Module, ModuleList | ||
|
||
from einops import rearrange | ||
from einops.layers.torch import Rearrange | ||
|
||
# constants | ||
|
||
Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) | ||
|
||
# helpers | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
def posemb_sincos_3d(patches, temperature = 10000, dtype = torch.float32): | ||
_, f, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype | ||
|
||
z, y, x = torch.meshgrid( | ||
torch.arange(f, device = device), | ||
torch.arange(h, device = device), | ||
torch.arange(w, device = device), | ||
indexing = 'ij') | ||
|
||
fourier_dim = dim // 6 | ||
|
||
omega = torch.arange(fourier_dim, device = device) / (fourier_dim - 1) | ||
omega = 1. / (temperature ** omega) | ||
|
||
z = z.flatten()[:, None] * omega[None, :] | ||
y = y.flatten()[:, None] * omega[None, :] | ||
x = x.flatten()[:, None] * omega[None, :] | ||
|
||
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos(), z.sin(), z.cos()), dim = 1) | ||
|
||
pe = F.pad(pe, (0, dim - (fourier_dim * 6))) # pad if feature dimension not cleanly divisible by 6 | ||
return pe.type(dtype) | ||
|
||
# main class | ||
|
||
class Attend(Module): | ||
def __init__(self, use_flash = False, config: Config = Config(True, True, True)): | ||
super().__init__() | ||
self.config = config | ||
self.use_flash = use_flash | ||
assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' | ||
|
||
def flash_attn(self, q, k, v): | ||
# flash attention - https://arxiv.org/abs/2205.14135 | ||
|
||
with torch.backends.cuda.sdp_kernel(**self.config._asdict()): | ||
out = F.scaled_dot_product_attention(q, k, v) | ||
|
||
return out | ||
|
||
def forward(self, q, k, v): | ||
n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5 | ||
|
||
if self.use_flash: | ||
return self.flash_attn(q, k, v) | ||
|
||
# similarity | ||
|
||
sim = einsum("b h i d, b j d -> b h i j", q, k) * scale | ||
|
||
# attention | ||
|
||
attn = sim.softmax(dim=-1) | ||
|
||
# aggregate values | ||
|
||
out = einsum("b h i j, b j d -> b h i d", attn, v) | ||
|
||
return out | ||
|
||
# classes | ||
|
||
class FeedForward(Module): | ||
def __init__(self, dim, hidden_dim): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Linear(hidden_dim, dim), | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
self.norm = nn.LayerNorm(dim) | ||
|
||
self.attend = Attend(use_flash = use_flash) | ||
|
||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | ||
self.to_out = nn.Linear(inner_dim, dim, bias = False) | ||
|
||
def forward(self, x): | ||
x = self.norm(x) | ||
|
||
qkv = self.to_qkv(x).chunk(3, dim = -1) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | ||
|
||
out = self.attend(q, k, v) | ||
|
||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash): | ||
super().__init__() | ||
self.layers = ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(ModuleList([ | ||
Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash), | ||
FeedForward(dim, mlp_dim) | ||
])) | ||
|
||
def forward(self, x): | ||
for attn, ff in self.layers: | ||
x = attn(x) + x | ||
x = ff(x) + x | ||
|
||
return x | ||
|
||
class SimpleViT(Module): | ||
def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash_attn = True): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(image_patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
assert frames % frame_patch_size == 0, 'Frames must be divisible by the frame patch size' | ||
|
||
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size) | ||
patch_dim = channels * patch_height * patch_width * frame_patch_size | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size), | ||
nn.LayerNorm(patch_dim), | ||
nn.Linear(patch_dim, dim), | ||
nn.LayerNorm(dim), | ||
) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash_attn) | ||
|
||
self.to_latent = nn.Identity() | ||
self.linear_head = nn.Linear(dim, num_classes) | ||
|
||
def forward(self, video): | ||
*_, h, w, dtype = *video.shape, video.dtype | ||
|
||
x = self.to_patch_embedding(video) | ||
pe = posemb_sincos_3d(x) | ||
x = rearrange(x, 'b ... d -> b (...) d') + pe | ||
|
||
x = self.transformer(x) | ||
x = x.mean(dim = 1) | ||
|
||
x = self.to_latent(x) | ||
return self.linear_head(x) |