Skip to content

Commit

Permalink
ENH: a simple cov
Browse files Browse the repository at this point in the history
TST: cov: add another test

DOC: cov, mean: WIP docstrings

API: make `mean` private

DOC: cov: finish docstring
  • Loading branch information
lucascolley committed Oct 24, 2024
1 parent be06b63 commit 2edc2ce
Show file tree
Hide file tree
Showing 4 changed files with 154 additions and 5 deletions.
1 change: 1 addition & 0 deletions docs/api-reference.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
:toctree: generated
atleast_nd
cov
expand_dims
kron
```
4 changes: 2 additions & 2 deletions src/array_api_extra/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from __future__ import annotations

from ._funcs import atleast_nd, expand_dims, kron
from ._funcs import atleast_nd, cov, expand_dims, kron

__version__ = "0.1.2.dev0"

__all__ = ["__version__", "atleast_nd", "expand_dims", "kron"]
__all__ = ["__version__", "atleast_nd", "cov", "expand_dims", "kron"]
114 changes: 113 additions & 1 deletion src/array_api_extra/_funcs.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
from __future__ import annotations

import warnings
from typing import TYPE_CHECKING

if TYPE_CHECKING:
from ._typing import Array, ModuleType

__all__ = ["atleast_nd", "expand_dims", "kron"]
__all__ = ["atleast_nd", "cov", "expand_dims", "kron"]


def atleast_nd(x: Array, /, *, ndim: int, xp: ModuleType) -> Array:
Expand Down Expand Up @@ -48,6 +49,117 @@ def atleast_nd(x: Array, /, *, ndim: int, xp: ModuleType) -> Array:
return x


def cov(m: Array, /, *, xp: ModuleType) -> Array:
"""
Estimate a covariance matrix.
Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`,
then the covariance matrix element :math:`C_{ij}` is the covariance of
:math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance
of :math:`x_i`.
This provides a subset of the functionality of ``numpy.cov``.
Parameters
----------
m : array
A 1-D or 2-D array containing multiple variables and observations.
Each row of `m` represents a variable, and each column a single
observation of all those variables.
xp : array_namespace
The standard-compatible namespace for `m`.
Returns
-------
res : array
The covariance matrix of the variables.
Examples
--------
>>> import array_api_strict as xp
>>> import array_api_extra as xpx
Consider two variables, :math:`x_0` and :math:`x_1`, which
correlate perfectly, but in opposite directions:
>>> x = xp.asarray([[0, 2], [1, 1], [2, 0]]).T
>>> x
Array([[0, 1, 2],
[2, 1, 0]], dtype=array_api_strict.int64)
Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance
matrix shows this clearly:
>>> xpx.cov(x, xp=xp)
Array([[ 1., -1.],
[-1., 1.]], dtype=array_api_strict.float64)
Note that element :math:`C_{0,1}`, which shows the correlation between
:math:`x_0` and :math:`x_1`, is negative.
Further, note how `x` and `y` are combined:
>>> x = xp.asarray([-2.1, -1, 4.3])
>>> y = xp.asarray([3, 1.1, 0.12])
>>> X = xp.stack((x, y), axis=0)
>>> xpx.cov(X, xp=xp)
Array([[11.71 , -4.286 ],
[-4.286 , 2.14413333]], dtype=array_api_strict.float64)
>>> xpx.cov(x, xp=xp)
Array(11.71, dtype=array_api_strict.float64)
>>> xpx.cov(y, xp=xp)
Array(2.14413333, dtype=array_api_strict.float64)
"""
m = xp.asarray(m, copy=True)
dtype = (
xp.float64 if xp.isdtype(m.dtype, "integral") else xp.result_type(m, xp.float64)
)

m = atleast_nd(m, ndim=2, xp=xp)
m = xp.astype(m, dtype)

avg = _mean(m, axis=1, xp=xp)
fact = m.shape[1] - 1

if fact <= 0:
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=2)
fact = 0.0

m -= avg[:, None]
m_transpose = m.T
if xp.isdtype(m_transpose.dtype, "complex floating"):
m_transpose = xp.conj(m_transpose)
c = m @ m_transpose
c /= fact
axes = tuple(axis for axis, length in enumerate(c.shape) if length == 1)
return xp.squeeze(c, axis=axes)


def _mean(
x: Array,
/,
*,
axis: int | tuple[int, ...] | None = None,
keepdims: bool = False,
xp: ModuleType,
) -> Array:
"""
Complex mean, https://github.com/data-apis/array-api/issues/846.
"""
if xp.isdtype(x.dtype, "complex floating"):
x_real = xp.real(x)
x_imag = xp.imag(x)
mean_real = xp.mean(x_real, axis=axis, keepdims=keepdims)
mean_imag = xp.mean(x_imag, axis=axis, keepdims=keepdims)
return mean_real + (mean_imag * xp.asarray(1j))
return xp.mean(x, axis=axis, keepdims=keepdims)


def expand_dims(
a: Array, /, *, axis: int | tuple[int, ...] = (0,), xp: ModuleType
) -> Array:
Expand Down
40 changes: 38 additions & 2 deletions tests/test_funcs.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,15 @@
from __future__ import annotations

import contextlib
import warnings
from typing import TYPE_CHECKING, Any

# array-api-strict#6
import array_api_strict as xp # type: ignore[import-untyped]
import pytest
from numpy.testing import assert_array_equal, assert_equal
from numpy.testing import assert_allclose, assert_array_equal, assert_equal

from array_api_extra import atleast_nd, expand_dims, kron
from array_api_extra import atleast_nd, cov, expand_dims, kron

if TYPE_CHECKING:
Array = Any # To be changed to a Protocol later (see array-api#589)
Expand Down Expand Up @@ -76,6 +77,41 @@ def test_5D(self):
assert_array_equal(y, xp.ones((1, 1, 1, 1, 1, 1, 1, 1, 1)))


class TestCov:
def test_basic(self):
assert_allclose(
cov(xp.asarray([[0, 2], [1, 1], [2, 0]]).T, xp=xp),
xp.asarray([[1.0, -1.0], [-1.0, 1.0]]),
)

def test_complex(self):
x = xp.asarray([[1, 2, 3], [1j, 2j, 3j]])
res = xp.asarray([[1.0, -1.0j], [1.0j, 1.0]])
assert_allclose(cov(x, xp=xp), res)

def test_empty(self):
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
assert_array_equal(cov(xp.asarray([]), xp=xp), xp.nan)
assert_array_equal(
cov(xp.reshape(xp.asarray([]), (0, 2)), xp=xp),
xp.reshape(xp.asarray([]), (0, 0)),
)
assert_array_equal(
cov(xp.reshape(xp.asarray([]), (2, 0)), xp=xp),
xp.asarray([[xp.nan, xp.nan], [xp.nan, xp.nan]]),
)

def test_combination(self):
x = xp.asarray([-2.1, -1, 4.3])
y = xp.asarray([3, 1.1, 0.12])
X = xp.stack((x, y), axis=0)
desired = xp.asarray([[11.71, -4.286], [-4.286, 2.144133]])
assert_allclose(cov(X, xp=xp), desired, rtol=1e-6)
assert_allclose(cov(x, xp=xp), xp.asarray(11.71))
assert_allclose(cov(y, xp=xp), xp.asarray(2.144133), rtol=1e-6)


class TestKron:
def test_basic(self):
# Using 0-dimensional array
Expand Down

0 comments on commit 2edc2ce

Please sign in to comment.