Skip to content

Code for paper "Simple deep neural networks show state-of-the-art performance in ERP-based BCI"

Notifications You must be signed in to change notification settings

loic001/deep_bci_study

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep BCI study

To get the data, please send an email to [email protected]

Installation

$ git clone <this repo>
$ cd deep_bci_study
$ conda env create
$ source activate deep_bci
$ pip install -r requirements.txt

Run

Data pre-rocessing

Pre-process the data with the following commands :

#RSVP dataset, 48 sensors (dont forget to edit load_step_1.py before)
python load_step_1.py --cache-dir /tmp/cache --output-dir /<DIR>/rsvp48
python load_step_2.py --input-dir /processed_data/rsvp48

#MEEG dataset, 48 sensors (dont forget to edit load_step_1.py before)
python load_step_1.py --cache-dir /tmp/cache --output-dir /<DIR>/meeg48
python load_step_2.py --input-dir /processed_data/rsvp48

#RSVP dataset, 48 sensors, TOPO format (dont forget to edit load_step_1.py before)
python load_step_1.py --cache-dir /tmp/cache --output-dir /<DIR>/rsvp48_topo
python load_step_2.py --input-dir /processed_data/rsvp48_topo
...

Generate the scenario files

python gen_scenario.py --base-path /processed_data --output-dir /scenarios

Run the models

Run one scenario (one subject) with one model and show test results (it's convenient for testing a model):

python deep_run_and_test.py --scenario /scenarios/rsvp48/VPfat.json --model 'mlp'

Run one scenario (one subject) with one model (no testing) :

python deep_run.py --scenario /scenarios/rsvp48/VPfat.json --model 'mlp'

Run one scenario for all subjects (run sequentially). Start by editing launch.py then :

#check with
python launch.py
#execute with
python launch.py --execute

Run the models on the local cluster

Connect to the local cluster:

ssh 10.69.111.81

Clone this gitlab repo and install all deps on the cluster. Data must be put in /mnt/data/<your_name>/ directory.

Run one scenario for all subjects on the local cluster. Start by editing launch.py then :

#check with
python launch.py --no-cluster
#execute with
python launch.py --no-cluster | sh

Scenarios

alt text

Models description

alt text

alt text alt text alt text alt text alt text alt text

About

Code for paper "Simple deep neural networks show state-of-the-art performance in ERP-based BCI"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages