-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[FSTORE-1461] Refactor Kafka out of python engine (#1359)
* Start Kafka refactor * Continue refactor of kafka/avro out of python engine * Minor tidy up of args * Tidy up python engine * Minor refactoring of multi_part_insert and kafka headers * Options to get_kafka_config with spark options * Fix mocking * Move and fix kafka tests * More fixing of mocking * More work on unit test fixing * Fix with import reload * Fix mocking in test_feature_group_writer * Fix mocking in engine/test_python --------- Co-authored-by: Aleksey Veresov <[email protected]>
- Loading branch information
Showing
10 changed files
with
909 additions
and
926 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
# | ||
# Copyright 2024 Hopsworks AB | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
from __future__ import annotations | ||
|
||
import json | ||
from io import BytesIO | ||
from typing import TYPE_CHECKING, Any, Callable, Dict, Literal, Optional, Tuple, Union | ||
|
||
from hsfs import client | ||
from hsfs.client import hopsworks | ||
from hsfs.core import storage_connector_api | ||
from hsfs.core.constants import HAS_AVRO, HAS_CONFLUENT_KAFKA, HAS_FAST_AVRO | ||
from tqdm import tqdm | ||
|
||
|
||
if HAS_CONFLUENT_KAFKA: | ||
from confluent_kafka import Consumer, KafkaError, Producer, TopicPartition | ||
|
||
if HAS_FAST_AVRO: | ||
from fastavro import schemaless_writer | ||
from fastavro.schema import parse_schema | ||
elif HAS_AVRO: | ||
import avro.io | ||
import avro.schema | ||
|
||
|
||
if TYPE_CHECKING: | ||
from hsfs.feature_group import ExternalFeatureGroup, FeatureGroup | ||
|
||
|
||
def init_kafka_consumer( | ||
feature_store_id: int, | ||
offline_write_options: Dict[str, Any], | ||
) -> Consumer: | ||
# setup kafka consumer | ||
consumer_config = get_kafka_config(feature_store_id, offline_write_options) | ||
if "group.id" not in consumer_config: | ||
consumer_config["group.id"] = "hsfs_consumer_group" | ||
|
||
return Consumer(consumer_config) | ||
|
||
|
||
def init_kafka_resources( | ||
feature_group: Union[FeatureGroup, ExternalFeatureGroup], | ||
offline_write_options: Dict[str, Any], | ||
project_id: int, | ||
) -> Tuple[ | ||
Producer, Dict[str, bytes], Dict[str, Callable[..., bytes]], Callable[..., bytes] : | ||
]: | ||
# this function is a caching wrapper around _init_kafka_resources | ||
if feature_group._multi_part_insert and feature_group._kafka_producer: | ||
return ( | ||
feature_group._kafka_producer, | ||
feature_group._kafka_headers, | ||
feature_group._feature_writers, | ||
feature_group._writer, | ||
) | ||
producer, headers, feature_writers, writer = _init_kafka_resources( | ||
feature_group, offline_write_options, project_id | ||
) | ||
if feature_group._multi_part_insert: | ||
feature_group._kafka_producer = producer | ||
feature_group._kafka_headers = headers | ||
feature_group._feature_writers = feature_writers | ||
feature_group._writer = writer | ||
return producer, headers, feature_writers, writer | ||
|
||
|
||
def _init_kafka_resources( | ||
feature_group: Union[FeatureGroup, ExternalFeatureGroup], | ||
offline_write_options: Dict[str, Any], | ||
project_id: int, | ||
) -> Tuple[ | ||
Producer, Dict[str, bytes], Dict[str, Callable[..., bytes]], Callable[..., bytes] : | ||
]: | ||
# setup kafka producer | ||
producer = init_kafka_producer( | ||
feature_group.feature_store_id, offline_write_options | ||
) | ||
# setup complex feature writers | ||
feature_writers = { | ||
feature: get_encoder_func(feature_group._get_feature_avro_schema(feature)) | ||
for feature in feature_group.get_complex_features() | ||
} | ||
# setup row writer function | ||
writer = get_encoder_func(feature_group._get_encoded_avro_schema()) | ||
|
||
# custom headers for hopsworks onlineFS | ||
headers = { | ||
"projectId": str(project_id).encode("utf8"), | ||
"featureGroupId": str(feature_group._id).encode("utf8"), | ||
"subjectId": str(feature_group.subject["id"]).encode("utf8"), | ||
} | ||
return producer, headers, feature_writers, writer | ||
|
||
|
||
def init_kafka_producer( | ||
feature_store_id: int, | ||
offline_write_options: Dict[str, Any], | ||
) -> Producer: | ||
# setup kafka producer | ||
return Producer(get_kafka_config(feature_store_id, offline_write_options)) | ||
|
||
|
||
def kafka_get_offsets( | ||
topic_name: str, | ||
feature_store_id: int, | ||
offline_write_options: Dict[str, Any], | ||
high: bool, | ||
) -> str: | ||
consumer = init_kafka_consumer(feature_store_id, offline_write_options) | ||
topics = consumer.list_topics( | ||
timeout=offline_write_options.get("kafka_timeout", 6) | ||
).topics | ||
if topic_name in topics.keys(): | ||
# topic exists | ||
offsets = "" | ||
tuple_value = int(high) | ||
for partition_metadata in topics.get(topic_name).partitions.values(): | ||
partition = TopicPartition( | ||
topic=topic_name, partition=partition_metadata.id | ||
) | ||
offsets += f",{partition_metadata.id}:{consumer.get_watermark_offsets(partition)[tuple_value]}" | ||
consumer.close() | ||
|
||
return f" -initialCheckPointString {topic_name + offsets}" | ||
return "" | ||
|
||
|
||
def kafka_produce( | ||
producer: Producer, | ||
key: str, | ||
encoded_row: bytes, | ||
topic_name: str, | ||
headers: Dict[str, bytes], | ||
acked: callable, | ||
debug_kafka: bool = False, | ||
) -> None: | ||
while True: | ||
# if BufferError is thrown, we can be sure, message hasn't been send so we retry | ||
try: | ||
# produce | ||
producer.produce( | ||
topic=topic_name, | ||
key=key, | ||
value=encoded_row, | ||
callback=acked, | ||
headers=headers, | ||
) | ||
|
||
# Trigger internal callbacks to empty op queue | ||
producer.poll(0) | ||
break | ||
except BufferError as e: | ||
if debug_kafka: | ||
print("Caught: {}".format(e)) | ||
# backoff for 1 second | ||
producer.poll(1) | ||
|
||
|
||
def encode_complex_features( | ||
feature_writers: Dict[str, callable], row: Dict[str, Any] | ||
) -> Dict[str, Any]: | ||
for feature_name, writer in feature_writers.items(): | ||
with BytesIO() as outf: | ||
writer(row[feature_name], outf) | ||
row[feature_name] = outf.getvalue() | ||
return row | ||
|
||
|
||
def get_encoder_func(writer_schema: str) -> callable: | ||
if HAS_FAST_AVRO: | ||
schema = json.loads(writer_schema) | ||
parsed_schema = parse_schema(schema) | ||
return lambda record, outf: schemaless_writer(outf, parsed_schema, record) | ||
|
||
parsed_schema = avro.schema.parse(writer_schema) | ||
writer = avro.io.DatumWriter(parsed_schema) | ||
return lambda record, outf: writer.write(record, avro.io.BinaryEncoder(outf)) | ||
|
||
|
||
def get_kafka_config( | ||
feature_store_id: int, | ||
write_options: Optional[Dict[str, Any]] = None, | ||
engine: Literal["spark", "confluent"] = "confluent", | ||
) -> Dict[str, Any]: | ||
if write_options is None: | ||
write_options = {} | ||
external = not ( | ||
isinstance(client.get_instance(), hopsworks.Client) | ||
or write_options.get("internal_kafka", False) | ||
) | ||
|
||
storage_connector = storage_connector_api.StorageConnectorApi().get_kafka_connector( | ||
feature_store_id, external | ||
) | ||
|
||
if engine == "spark": | ||
config = storage_connector.spark_options() | ||
config.update(write_options) | ||
elif engine == "confluent": | ||
config = storage_connector.confluent_options() | ||
config.update(write_options.get("kafka_producer_config", {})) | ||
return config | ||
|
||
|
||
def build_ack_callback_and_optional_progress_bar( | ||
n_rows: int, is_multi_part_insert: bool, offline_write_options: Dict[str, Any] | ||
) -> Tuple[Callable, Optional[tqdm]]: | ||
if not is_multi_part_insert: | ||
progress_bar = tqdm( | ||
total=n_rows, | ||
bar_format="{desc}: {percentage:.2f}% |{bar}| Rows {n_fmt}/{total_fmt} | " | ||
"Elapsed Time: {elapsed} | Remaining Time: {remaining}", | ||
desc="Uploading Dataframe", | ||
mininterval=1, | ||
) | ||
else: | ||
progress_bar = None | ||
|
||
def acked(err: Exception, msg: Any) -> None: | ||
if err is not None: | ||
if offline_write_options.get("debug_kafka", False): | ||
print("Failed to deliver message: %s: %s" % (str(msg), str(err))) | ||
if err.code() in [ | ||
KafkaError.TOPIC_AUTHORIZATION_FAILED, | ||
KafkaError._MSG_TIMED_OUT, | ||
]: | ||
progress_bar.colour = "RED" | ||
raise err # Stop producing and show error | ||
# update progress bar for each msg | ||
if not is_multi_part_insert: | ||
progress_bar.update() | ||
|
||
return acked, progress_bar |
Oops, something went wrong.