Skip to content

Commit

Permalink
add support in the evaluation scores
Browse files Browse the repository at this point in the history
  • Loading branch information
lfoppiano committed Jan 30, 2024
1 parent 4a1487c commit 5f404ad
Showing 1 changed file with 37 additions and 36 deletions.
73 changes: 37 additions & 36 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,17 +44,19 @@ is [0.7.3](https://github.com/kermitt2/grobid-quantities/releases/tag/v0.7.3). T
### Update from 0.7.2 to 0.7.3

#### Grobid models

In version 0.7.3 we have updated the DeLFT models. The DL models must be updated by running `./gradlew copyModels`.

#### JDK Update

The version 0.7.3 enable the support for running with JDK > 11. We recommend to run it with JDK 17.
Running grobid-quantities with gradle (`./gradlew clean run`) is already supported in the `build.gradle`.
Running grobid-quantities via the JAR file requires an additional parameter to set the java.path:
Running grobid-quantities via the JAR file requires an additional parameter to set the java.path:

- Linux: `-Djava.library.path=../grobid-home/lib/lin-64:../grobid-home/lib/lin-64/jep`
- Mac (arm): `-Djava.library.path=.:/usr/lib/java:../grobid-home/lib/mac_arm-64:{MY_VIRTUAL_ENV}/jep/lib:{MY_VIRTUAL_ENV}/jep/lib/python3.9/site-packages/jep --add-opens java.base/java.lang=ALL-UNNAMED`
- Mac (intel): `-Djava.library.path=.:/usr/lib/java:../grobid-home/lib/mac-64:{MY_VIRTUAL_ENV}/jep/lib:{MY_VIRTUAL_ENV}/jep/lib/python3.9/site-packages/jep --add-opens java.base/java.lang=ALL-UNNAMED`
With `MY_VIRTUAL_ENV` I use `/Users/lfoppiano/anaconda3/envs/jep`

With `MY_VIRTUAL_ENV` I use `/Users/lfoppiano/anaconda3/envs/jep`

### Update from 0.7.1 to 0.7.2

Expand Down Expand Up @@ -83,42 +85,42 @@ Update on the 27/10/2022

#### Quantities

| Labels | CRF | | | **BidLSTM_CRF** | | | **BidLSTM_CRF_FEATURES** | | | **BERT_CRF** | | |
|------------------|---------------|------------|--------------|-----------------|------------|--------------|--------------------------|------------|--------------|---------------|------------|--------------|
| Metrics | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** |
| `<unitLeft>` | 88.74 | 83.19 | 85.87 | 88.56 | 92.07 | 90.28 | 88.91 | 92.20 | 90.53 | 93.99 | 90.30 | 92.11 |
| `<unitRight>` | 30.77 | 30.77 | 30.77 | 24.75 | 30.77 | 27.42 | 21.73 | 30.77 | 25.41 | 21.84 | 36.92 | 27.44 |
| `<valueAtomic>` | 76.29 | 78.66 | 77.46 | 78.14 | 86.06 | 81.90 | 78.21 | 86.20 | 82.01 | 84.50 | 88.19 | 86.31 |
| `<valueBase>` | 84.62 | 62.86 | 72.13 | 83.51 | 94.86 | 88.61 | 83.36 | 97.14 | 89.72 | 100.00 | 90.86 | 95.20 |
| `<valueLeast>` | 77.68 | 69.05 | 73.11 | 82.14 | 60.63 | 69.67 | 80.73 | 60.63 | 69.12 | 81.09 | 71.59 | 76.04 |
| `<valueList>` | 45.45 | 18.87 | 26.67 | 62.15 | 10.19 | 17.34 | 73.33 | 8.68 | 15.33 | 64.12 | 43.78 | 51.64 |
| `<valueMost>` | 71.62 | 54.64 | 61.99 | 77.64 | 68.25 | 72.61 | 77.25 | 70.31 | 73.58 | 81.52 | 67.42 | 73.71 |
| `<valueRange>` | 100 | 97.14 | 98.55 | 96.72 | 100.00 | 98.32 | 94.05 | 98.86 | 96.38 | 99.39 | 91.43 | 95.24 |
| -- | | | | | | | | | | | | |
| All (micro avg) | 80.08 | 75 | 77.45 | 81.81 | 81.73 | 81.76 | 81.76 | 81.94 | 81.85 | 86.24 | 83.96 | 85.08 |
| Labels | CRF | | | **BidLSTM_CRF** | | | **BidLSTM_CRF_FEATURES** | | | **BERT_CRF** | | | **Support** |
|-----------------|---------------|------------|--------------|-----------------|------------|--------------|--------------------------|------------|--------------|---------------|------------|--------------|-------------|
| Metrics | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | |
| `<unitLeft>` | 88.74 | 83.19 | 85.87 | 88.56 | 92.07 | 90.28 | 88.91 | 92.20 | 90.53 | 93.99 | 90.30 | 92.11 | 464 |
| `<unitRight>` | 30.77 | 30.77 | 30.77 | 24.75 | 30.77 | 27.42 | 21.73 | 30.77 | 25.41 | 21.84 | 36.92 | 27.44 | 13 |
| `<valueAtomic>` | 76.29 | 78.66 | 77.46 | 78.14 | 86.06 | 81.90 | 78.21 | 86.20 | 82.01 | 84.50 | 88.19 | 86.31 | 581 |
| `<valueBase>` | 84.62 | 62.86 | 72.13 | 83.51 | 94.86 | 88.61 | 83.36 | 97.14 | 89.72 | 100.00 | 90.86 | 95.20 | 35 |
| `<valueLeast>` | 77.68 | 69.05 | 73.11 | 82.14 | 60.63 | 69.67 | 80.73 | 60.63 | 69.12 | 81.09 | 71.59 | 76.04 | 126 |
| `<valueList>` | 45.45 | 18.87 | 26.67 | 62.15 | 10.19 | 17.34 | 73.33 | 8.68 | 15.33 | 64.12 | 43.78 | 51.64 | 53 |
| `<valueMost>` | 71.62 | 54.64 | 61.99 | 77.64 | 68.25 | 72.61 | 77.25 | 70.31 | 73.58 | 81.52 | 67.42 | 73.71 | 97 |
| `<valueRange>` | 100.00 | 97.14 | 98.55 | 96.72 | 100.00 | 98.32 | 94.05 | 98.86 | 96.38 | 99.39 | 91.43 | 95.24 | 35 |
| -- | | | | | | | | | | | | | |
| All (micro avg) | 80.08 | 75 | 77.45 | 81.81 | 81.73 | 81.76 | 81.76 | 81.94 | 81.85 | 86.24 | 83.96 | 85.08 | |

#### Units

| | **CRF** | | | **BidLSTM_CRF** | | | **BidLSTM_CRF_FEATURES** | | | **BERT_CRF** | | |
|-----------------|---------------|------------|--------------|-----------------|------------|--------------|--------------------------|------------|--------------|---------------|------------|--------------|
| Labels | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** |
| `<base>` | 80.57 | 82.34 | 81.45 | 56.01 | 50.34 | 53.02 | 59.98 | 56.33 | 58.09 | 61.41 | 57.08 | 59.16 |
| `<pow>` | 72.65 | 74.45 | 73.54 | 93.70 | 62.38 | 74.88 | 93.71 | 68.40 | 78.94 | 91.24 | 64.60 | 75.60 |
| `<prefix>` | 93.8 | 84.69 | 89.02 | 80.31 | 85.25 | 82.54 | 83.21 | 83.58 | 83.35 | 82.10 | 85.30 | 83.62 |
| -- | | | | | | | | | | | | |
| All (micro avg) | 80.73 | 80.6 | 80.66 | 70.19 | 60.88 | 65.20 | 73.03 | 65.31 | 68.94 | 73.02 | 64.97 | 68.76 |
| | **CRF** | | | **BidLSTM_CRF** | | | **BidLSTM_CRF_FEATURES** | | | **BERT_CRF** | | | **Support** |
|-----------------|---------------|------------|--------------|-----------------|------------|--------------|--------------------------|------------|--------------|---------------|------------|--------------|-------------|
| Labels | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | |
| `<base>` | 80.57 | 82.34 | 81.45 | 56.01 | 50.34 | 53.02 | 59.98 | 56.33 | 58.09 | 61.41 | 57.08 | 59.16 | 3228 |
| `<pow>` | 72.65 | 74.45 | 73.54 | 93.70 | 62.38 | 74.88 | 93.71 | 68.40 | 78.94 | 91.24 | 64.60 | 75.60 | 1773 |
| `<prefix>` | 93.8 | 84.69 | 89.02 | 80.31 | 85.25 | 82.54 | 83.21 | 83.58 | 83.35 | 82.10 | 85.30 | 83.62 | 1287 |
| -- | | | | | | | | | | | | | |
| All (micro avg) | 80.73 | 80.6 | 80.66 | 70.19 | 60.88 | 65.20 | 73.03 | 65.31 | 68.94 | 73.02 | 64.97 | 68.76 | |

#### Values

| | **CRF** | | | **BidLSTM_CRF** | | | **BidLSTM_CRF_FEATURES** | | | **BERT_CRF** | | |
|-----------------|---------------|------------|--------------|-----------------|------------|----------|--------------------------|------------|--------------|-----------------|------------|--------------|
| Labels | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | F1-Score | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** |
| `<alpha>` | 98.06 | 96.03 | 92.02 | 97.67 | 99.53 | 98.58 | 97.82 | 99.53 | 98.66 | 98.59 | 99.53 | 99.05 |
| `<base>` | 99.91 | 92.31 | 96 | 96.92 | 92.31 | 94.52 | 96.92 | 93.85 | 95.32 | 90.40 | 98.46 | 92.88 |
| `<number>` | 97.5 | 99.88 | 98.36 | 99.24 | 99.34 | 99.29 | 99.21 | 99.38 | 99.30 | 99.48 | 99.31 | 99.40 |
| `<pow>` | 100 | 100 | 100 | 92.92 | 92.31 | 92.47 | 90.28 | 93.85 | 91.90 | 100.00 | 100.00 | 100.00 |
| -- | | | | | | | | | | | | |
| All (micro avg) | 95.79 | 99.27 | 97.5 | 98.90 | 99.17 | 99.03 | 98.86 | 99.25 | 99.05 | 99.13 | 99.33 | 99.23 |
| | **CRF** | | | **BidLSTM_CRF** | | | **BidLSTM_CRF_FEATURES** | | | **BERT_CRF** | | | **Support** |
|-----------------|---------------|------------|--------------|-----------------|------------|----------|--------------------------|------------|--------------|---------------|------------|--------------|-------------|
| Labels | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | F1-Score | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | |
| `<alpha>` | 98.06 | 96.03 | 92.02 | 97.67 | 99.53 | 98.58 | 97.82 | 99.53 | 98.66 | 98.59 | 99.53 | 99.05 | 126 |
| `<base>` | 99.91 | 92.31 | 96 | 96.92 | 92.31 | 94.52 | 96.92 | 93.85 | 95.32 | 90.40 | 98.46 | 92.88 | 13 |
| `<number>` | 97.5 | 99.88 | 98.36 | 99.24 | 99.34 | 99.29 | 99.21 | 99.38 | 99.30 | 99.48 | 99.31 | 99.40 | 811 |
| `<pow>` | 100 | 100 | 100 | 92.92 | 92.31 | 92.47 | 90.28 | 93.85 | 91.90 | 100.00 | 100.00 | 100.00 | 13 |
| -- | | | | | | | | | | | | | |
| All (micro avg) | 95.79 | 99.27 | 97.5 | 98.90 | 99.17 | 99.03 | 98.86 | 99.25 | 99.05 | 99.13 | 99.33 | 99.23 | |

<details>
<summary>Previous evaluations</summary>
Expand Down Expand Up @@ -179,9 +181,8 @@ Scientific Literature", published in September 2019 reported average evaluation

## Acknowledgement

This project has been created and developed by [science-miner](https://www.science-miner.com) since 2015, with additional
support by [Inria](http://www.inria.fr), in Paris (France) and
the [National Institute for Materials Science](http://www.nims.go.jp),
This project has been created and developed by [science-miner](https://www.science-miner.com) since 2015, with
additional support by [Inria](http://www.inria.fr), in Paris (France) and the [National Institute for Materials Science](http://www.nims.go.jp),
in [Tsukuba](https://en.wikipedia.org/wiki/Tsukuba,_Ibaraki) (Japan).

## How to cite
Expand Down

0 comments on commit 5f404ad

Please sign in to comment.