Skip to content

Commit

Permalink
update formatter version and style settings (microsoft#3098)
Browse files Browse the repository at this point in the history
  • Loading branch information
jeffra authored Mar 27, 2023
1 parent b3ec1c9 commit 91d63e0
Show file tree
Hide file tree
Showing 325 changed files with 5,259 additions and 12,322 deletions.
4 changes: 2 additions & 2 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ repos:
- id: requirements-txt-fixer
- id: trailing-whitespace

- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.31.0
- repo: https://github.com/google/yapf
rev: v0.32.0
hooks:
- id: yapf

Expand Down
4 changes: 2 additions & 2 deletions .style.yapf
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
[style]
SPLIT_ALL_COMMA_SEPARATED_VALUES = true
COLUMN_LIMIT = 89
SPLIT_ALL_COMMA_SEPARATED_VALUES = false
COLUMN_LIMIT = 119
1 change: 1 addition & 0 deletions accelerator/abstract_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@


class DeepSpeedAccelerator(ABC):

def __init__(self):
self._name = None
self._communication_backend_name = None
Expand Down
5 changes: 2 additions & 3 deletions accelerator/cuda_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@


class CUDA_Accelerator(DeepSpeedAccelerator):

def __init__(self):
self._name = 'cuda'
self._communication_backend_name = 'nccl'
Expand All @@ -26,9 +27,7 @@ def __init__(self):
for _, module_name, _ in pkgutil.iter_modules([os.path.dirname(op_builder_module.__file__)]):
# avoid self references
if module_name != 'all_ops' and module_name != 'builder':
module = importlib.import_module("{}.{}".format(
op_builder_dir,
module_name))
module = importlib.import_module("{}.{}".format(op_builder_dir, module_name))
for member_name in module.__dir__():
if member_name.endswith(
'Builder'
Expand Down
9 changes: 2 additions & 7 deletions accelerator/real_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,13 +23,8 @@ def _validate_accelerator(accel_obj):
# accelerator.abstractor_accelerator
# or deepspeed.accelerator.abstract_accelerator, consider accel_obj
# is a conforming object
if not ((dsa1 != None and isinstance(accel_obj,
dsa1)) or
(dsa2 != None and isinstance(accel_obj,
dsa2))):
raise AssertionError(
f'{accel_obj.__class__.__name__} accelerator is not subclass of DeepSpeedAccelerator'
)
if not ((dsa1 != None and isinstance(accel_obj, dsa1)) or (dsa2 != None and isinstance(accel_obj, dsa2))):
raise AssertionError(f'{accel_obj.__class__.__name__} accelerator is not subclass of DeepSpeedAccelerator')

# TODO: turn off is_available test since this breaks tests
#assert accel_obj.is_available(), \
Expand Down
49 changes: 14 additions & 35 deletions benchmarks/communication/all_gather.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,7 @@ def timed_all_gather(input, output, args):
if hasattr(torch.distributed, "_all_gather_base"):
dist._all_gather_base(output, input, group=None, async_op=args.async_op)
else:
output_tensors = list(
torch.chunk(output_tensor,
cdb.get_world_size(group)))
output_tensors = list(torch.chunk(output_tensor, cdb.get_world_size(group)))
dist.all_gather(output_tensors, input_tensor, group=group, async_op=True)
elif args.dist == 'deepspeed':
dist.allgather_fn(output, input, group=None, async_op=args.async_op)
Expand All @@ -38,9 +36,7 @@ def timed_all_gather(input, output, args):
if hasattr(torch.distributed, "_all_gather_base"):
dist._all_gather_base(output, input, group=None, async_op=args.async_op)
else:
output_tensors = list(
torch.chunk(output_tensor,
cdb.get_world_size(group)))
output_tensors = list(torch.chunk(output_tensor, cdb.get_world_size(group)))
dist.all_gather(output_tensors, input_tensor, group=group, async_op=True)
elif args.dist == 'deepspeed':
dist.allgather_fn(output, input, group=None, async_op=args.async_op)
Expand All @@ -58,8 +54,7 @@ def timed_all_gather(input, output, args):
if not args.raw:
size = convert_size(size)

print_rank_0(
f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")


def run_all_gather(local_rank, args):
Expand All @@ -84,22 +79,15 @@ def run_all_gather(local_rank, args):
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size,
M,
dtype=getattr(
torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(world_size, M,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
get_accelerator().empty_cache()
output = torch.zeros(input.nelement() * world_size,
dtype=getattr(
torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
Expand All @@ -110,41 +98,32 @@ def run_all_gather(local_rank, args):
timed_all_gather(input, output, args)
else:
# all_gather_base saves memory
if (args.dist == 'torch'
and hasattr(torch.distributed,
"_all_gather_base")) or (args.dist == 'deepspeed'
and dist.has_allgather_base):
if (args.dist == 'torch' and hasattr(torch.distributed, "_all_gather_base")) or (args.dist == 'deepspeed'
and dist.has_allgather_base):
mem_factor = args.mem_factor + 0.2
else:
mem_factor = args.mem_factor
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
sync_all()
elements_per_gpu = max_numel(comm_op='all_gather',
dtype=getattr(torch,
args.dtype),
dtype=getattr(torch, args.dtype),
mem_factor=mem_factor,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu,
dtype=getattr(torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(elements_per_gpu, dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
# multiply each GPU's tensor by the rank to ease debugging
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
get_accelerator().empty_cache()
output = torch.zeros(
elements_per_gpu * world_size,
dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
output = torch.zeros(elements_per_gpu * world_size,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print(
'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
)
print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return

Expand Down
24 changes: 7 additions & 17 deletions benchmarks/communication/all_reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,7 @@ def timed_all_reduce(input, args):
if not args.raw:
size = convert_size(size)

print_rank_0(
f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")


def run_all_reduce(local_rank, args):
Expand All @@ -63,12 +62,8 @@ def run_all_reduce(local_rank, args):
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size,
M,
dtype=getattr(
torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(world_size, M,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
except RuntimeError as e:
Expand All @@ -83,23 +78,18 @@ def run_all_reduce(local_rank, args):
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
# Don't need output tensor, so we double mem_factor
elements_per_gpu = max_numel(comm_op='all_reduce',
dtype=getattr(torch,
args.dtype),
dtype=getattr(torch, args.dtype),
mem_factor=args.mem_factor * 2,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu,
dtype=getattr(torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(elements_per_gpu, dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
input = ((mat.mul_(float(global_rank))).view(-1))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print(
'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
)
print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
sync_all()
Expand Down
33 changes: 11 additions & 22 deletions benchmarks/communication/all_to_all.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,7 @@ def timed_all_to_all(input, output, args):
if not args.raw:
size = convert_size(size)

print_rank_0(
f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")


def run_all_to_all(local_rank, args):
Expand All @@ -62,12 +61,8 @@ def run_all_to_all(local_rank, args):
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size,
M,
dtype=getattr(
torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(world_size, M,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
assert mat.numel() % world_size == 0, f"tensor cannot be divided in {world_size} chunks"
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
Expand All @@ -83,31 +78,25 @@ def run_all_to_all(local_rank, args):
else:
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
elements_per_gpu = max_numel(comm_op='all_to_all',
dtype=getattr(torch,
args.dtype),
dtype=getattr(torch, args.dtype),
mem_factor=args.mem_factor,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu,
dtype=getattr(torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
assert mat.numel() % world_size == 0, f"tensor with {mat.numel()} elements cannot be divided in {world_size} chunks"
mat = torch.ones(elements_per_gpu, dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
assert mat.numel(
) % world_size == 0, f"tensor with {mat.numel()} elements cannot be divided in {world_size} chunks"
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
get_accelerator().empty_cache()
output = torch.zeros(
elements_per_gpu,
dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
output = torch.zeros(elements_per_gpu,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print(
'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
)
print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
sync_all()
Expand Down
24 changes: 7 additions & 17 deletions benchmarks/communication/broadcast.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,7 @@ def timed_broadcast(input, args):
if not args.raw:
size = convert_size(size)

print_rank_0(
f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")


def run_broadcast(local_rank, args):
Expand All @@ -64,12 +63,8 @@ def run_broadcast(local_rank, args):
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size,
M,
dtype=getattr(
torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(world_size, M,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
except RuntimeError as e:
Expand All @@ -84,23 +79,18 @@ def run_broadcast(local_rank, args):
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
# Don't need output tensor, so we double mem_factor
elements_per_gpu = max_numel(comm_op='broadcast',
dtype=getattr(torch,
args.dtype),
dtype=getattr(torch, args.dtype),
mem_factor=args.mem_factor * 2,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu,
dtype=getattr(torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(elements_per_gpu, dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
input = ((mat.mul_(float(global_rank))).view(-1))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print(
'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
)
print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
sync_all()
Expand Down
24 changes: 7 additions & 17 deletions benchmarks/communication/pt2pt.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,7 @@ def timed_pt2pt(input, args):
if not args.raw:
size = convert_size(size)

print_rank_0(
f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")


def run_pt2pt(local_rank, args):
Expand All @@ -82,12 +81,8 @@ def run_pt2pt(local_rank, args):
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size,
M,
dtype=getattr(
torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(world_size, M,
dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank))
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
except RuntimeError as e:
Expand All @@ -102,23 +97,18 @@ def run_pt2pt(local_rank, args):
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
# Don't need output tensor, so double mem_factor
elements_per_gpu = max_numel(comm_op='pt2pt',
dtype=getattr(torch,
args.dtype),
dtype=getattr(torch, args.dtype),
mem_factor=args.mem_factor * 2,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu,
dtype=getattr(torch,
args.dtype)).to(
get_accelerator().device_name(local_rank))
mat = torch.ones(elements_per_gpu, dtype=getattr(torch,
args.dtype)).to(get_accelerator().device_name(local_rank))
input = ((mat.mul_(float(global_rank))).view(-1))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print(
'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
)
print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
sync_all()
Expand Down
Loading

0 comments on commit 91d63e0

Please sign in to comment.