Skip to content

Commit

Permalink
feat: RBMap lemmas cont'd: find?_erase
Browse files Browse the repository at this point in the history
  • Loading branch information
digama0 committed Apr 16, 2024
1 parent 5ac025b commit e0d4753
Show file tree
Hide file tree
Showing 4 changed files with 312 additions and 22 deletions.
7 changes: 7 additions & 0 deletions Std/Data/List/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1367,6 +1367,13 @@ theorem any_eq_not_all_not (l : List α) (p : α → Bool) : l.any p = !l.all (!
theorem all_eq_not_any_not (l : List α) (p : α → Bool) : l.all p = !l.any (!p .) := by
simp only [not_any_eq_all_not, Bool.not_not]

/-! ### all₂ -/

theorem beq_eq_all₂ [BEq α] (l₁ l₂ : List α) : (l₁ == l₂) = l₁.all₂ BEq.beq l₂ := by
simp [BEq.beq]
induction l₁ generalizing l₂ <;> cases l₂ <;> simp [List.beq, all₂]
next a _ ih b _ => cases a == b <;> simp [ih]

/-! ### reverse -/

@[simp] theorem mem_reverseAux {x : α} : ∀ {as bs}, x ∈ reverseAux as bs ↔ x ∈ as ∨ x ∈ bs
Expand Down
19 changes: 9 additions & 10 deletions Std/Data/RBMap/Alter.lean
Original file line number Diff line number Diff line change
Expand Up @@ -71,8 +71,7 @@ theorem insertNew_eq_insert (h : zoom (cmp v) t = (nil, path)) :

theorem zoom_del {t : RBNode α} :
t.zoom cut path = (t', path') →
path.del (t.del cut) (match t with | node c .. => c | _ => red) =
path'.del t'.delRoot (match t' with | node c .. => c | _ => red) := by
path.del (t.del cut) t.isBlack = path'.del t'.delRoot t'.isBlack := by
unfold RBNode.del; split <;> simp [zoom]
· intro | rfl, rfl => rfl
· next c a y b =>
Expand Down Expand Up @@ -279,19 +278,19 @@ protected theorem Ordered.fill : ∀ {path : Path α} {t},
fun ⟨hp, ⟨ax, xb, ha, hb⟩, ⟨xp, ap, bp⟩⟩ => ⟨⟨hp, ax, xp, ap, ha⟩, hb, ⟨xb, bp⟩⟩,
fun ⟨⟨hp, ax, xp, ap, ha⟩, hb, ⟨xb, bp⟩⟩ => ⟨hp, ⟨ax, xb, ha, hb⟩, ⟨xp, ap, bp⟩⟩⟩

theorem _root_.Std.RBNode.Ordered.zoom' {t : RBNode α} {path : Path α}
protected theorem _root_.Std.RBNode.Ordered.zoom' {t : RBNode α} {path : Path α}
(ht : t.Ordered cmp) (hp : path.Ordered cmp) (tp : t.All (path.RootOrdered cmp))
(pz : path.Zoomed cut) (eq : t.zoom cut path = (t', path')) :
t'.Ordered cmp ∧ path'.Ordered cmp ∧ t'.All (path'.RootOrdered cmp) ∧ path'.Zoomed cut :=
have ⟨hp', ht', tp'⟩ := Ordered.fill.1 <| zoom_fill eq ▸ Ordered.fill.2 ⟨hp, ht, tp⟩
⟨ht', hp', tp', zoom_zoomed₂ eq pz⟩

theorem _root_.Std.RBNode.Ordered.zoom {t : RBNode α}
protected theorem _root_.Std.RBNode.Ordered.zoom {t : RBNode α}
(ht : t.Ordered cmp) (eq : t.zoom cut = (t', path')) :
t'.Ordered cmp ∧ path'.Ordered cmp ∧ t'.All (path'.RootOrdered cmp) ∧ path'.Zoomed cut :=
ht.zoom' (path := .root) ⟨⟩ (.trivial ⟨⟩) ⟨⟩ eq

theorem Ordered.ins : ∀ {path : Path α} {t : RBNode α},
protected theorem Ordered.ins : ∀ {path : Path α} {t : RBNode α},
t.Ordered cmp → path.Ordered cmp → t.All (path.RootOrdered cmp) → (path.ins t).Ordered cmp
| .root, t, ht, _, _ => Ordered.setBlack.2 ht
| .left red parent x b, a, ha, ⟨hp, xb, xp, bp, hb⟩, H => by
Expand All @@ -305,18 +304,18 @@ theorem Ordered.ins : ∀ {path : Path α} {t : RBNode α},
unfold ins; have ⟨xb, bp⟩ := All_and.1 H
exact hp.ins (ha.balance2 ax xb hb) (balance2_All.2 ⟨xp, ap, bp⟩)

theorem Ordered.insertNew {path : Path α} (hp : path.Ordered cmp) (vp : path.RootOrdered cmp v) :
(path.insertNew v).Ordered cmp :=
protected theorem Ordered.insertNew {path : Path α}
(hp : path.Ordered cmp) (vp : path.RootOrdered cmp v) : (path.insertNew v).Ordered cmp :=
hp.ins ⟨⟨⟩, ⟨⟩, ⟨⟩, ⟨⟩⟩ ⟨vp, ⟨⟩, ⟨⟩⟩

theorem Ordered.insert : ∀ {path : Path α} {t : RBNode α},
protected theorem Ordered.insert : ∀ {path : Path α} {t : RBNode α},
path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → path.RootOrdered cmp v →
t.OnRoot (cmpEq cmp v) → (path.insert t v).Ordered cmp
| _, nil, hp, _, _, vp, _ => hp.insertNew vp
| _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩, vp, xv => Ordered.fill.2
⟨hp, ⟨ax.imp xv.lt_congr_right.2, xb.imp xv.lt_congr_left.2, ha, hb⟩, vp, ap, bp⟩

theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c},
protected theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c},
t.Ordered cmp → path.Ordered cmp → t.All (path.RootOrdered cmp) → (path.del t c).Ordered cmp
| .root, t, _, ht, _, _ => Ordered.setBlack.2 ht
| .left _ parent x b, a, red, ha, ⟨hp, xb, xp, bp, hb⟩, H => by
Expand All @@ -330,7 +329,7 @@ theorem Ordered.del : ∀ {path : Path α} {t : RBNode α} {c},
unfold del; have ⟨xb, bp⟩ := All_and.1 H
exact hp.del (ha.balRight ax xb hb) (ap.balRight xp bp)

theorem Ordered.erase : ∀ {path : Path α} {t : RBNode α},
protected theorem Ordered.erase : ∀ {path : Path α} {t : RBNode α},
path.Ordered cmp → t.Ordered cmp → t.All (path.RootOrdered cmp) → (path.erase t).Ordered cmp
| _, nil, hp, ht, tp => Ordered.fill.2 ⟨hp, ht, tp⟩
| _, node .., hp, ⟨ax, xb, ha, hb⟩, ⟨_, ap, bp⟩ => hp.del (ha.append ax xb hb) (ap.append bp)
Expand Down
23 changes: 20 additions & 3 deletions Std/Data/RBMap/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -686,9 +686,19 @@ if it returns `.eq` we will remove the element.
(The function `cmp k` for some key `k` is a valid cut function, but we can also use cuts that
are not of this form as long as they are suitably monotonic.)
-/
@[inline] def erase (t : RBSet α cmp) (cut : α → Ordering) : RBSet α cmp :=
@[inline] def eraseP (t : RBSet α cmp) (cut : α → Ordering) : RBSet α cmp :=
⟨t.1.erase cut, t.2.erase⟩

/--
`O(log n)`. Remove an element from the tree using a cut function.
The `cut` function is used to locate an element in the tree:
it returns `.gt` if we go too high and `.lt` if we go too low;
if it returns `.eq` we will remove the element.
(The function `cmp k` for some key `k` is a valid cut function, but we can also use cuts that
are not of this form as long as they are suitably monotonic.)
-/
@[inline] def erase (t : RBSet α cmp) (x : α) : RBSet α cmp := t.eraseP (cmp x)

/-- `O(log n)`. Find an element in the tree using a cut function. -/
@[inline] def findP? (t : RBSet α cmp) (cut : α → Ordering) : Option α := t.1.find? cut

Expand All @@ -705,7 +715,7 @@ if it exists. If multiple keys in the map return `eq` under `cut`, any of them m
@[inline] def upperBoundP? (t : RBSet α cmp) (cut : α → Ordering) : Option α := t.1.upperBound? cut

/--
`O(log n)`. `upperBound? k` retrieves the largest entry smaller than or equal to `k`,
`O(log n)`. `upperBound? k` retrieves the smallest entry larger than or equal to `k`,
if it exists.
-/
@[inline] def upperBound? (t : RBSet α cmp) (k : α) : Option α := t.upperBoundP? (cmp k)
Expand Down Expand Up @@ -1049,7 +1059,7 @@ instance [Repr α] [Repr β] : Repr (RBMap α β cmp) where
@[inline] def insert (t : RBMap α β cmp) (k : α) (v : β) : RBMap α β cmp := RBSet.insert t (k, v)

/-- `O(log n)`. Remove an element `k` from the map. -/
@[inline] def erase (t : RBMap α β cmp) (k : α) : RBMap α β cmp := RBSet.erase t (cmp k ·.1)
@[inline] def erase (t : RBMap α β cmp) (k : α) : RBMap α β cmp := RBSet.eraseP t (cmp k ·.1)

/-- `O(n log n)`. Build a tree from an unsorted list by inserting them one at a time. -/
@[inline] def ofList (l : List (α × β)) (cmp : α → α → Ordering) : RBMap α β cmp :=
Expand All @@ -1068,6 +1078,13 @@ instance [Repr α] [Repr β] : Repr (RBMap α β cmp) where
/-- `O(log n)`. Find the value corresponding to key `k`, or return `v₀` if it is not in the map. -/
@[inline] def findD (t : RBMap α β cmp) (k : α) (v₀ : β) : β := (t.find? k).getD v₀

/--
`O(log n)`. `upperBound? k` retrieves the key-value pair of the smallest key
larger than or equal to `k`, if it exists.
-/
@[inline] def upperBound? (t : RBMap α β cmp) (k : α) : Option (α × β) :=
RBSet.upperBoundP? t (cmp k ·.1)

/--
`O(log n)`. `lowerBound? k` retrieves the key-value pair of the largest key
smaller than or equal to `k`, if it exists.
Expand Down
Loading

0 comments on commit e0d4753

Please sign in to comment.