Skip to content

Commit

Permalink
New documentation site for Seldon Core v2 (SeldonIO#5760)
Browse files Browse the repository at this point in the history
New format compatible with GItBook

* moved docs out of the source directory and removed spnix-related files
* APIs section completed
* changing the configuration section in the getting started guide
* getting started sectionc completed
* rearranged models directory and enhanced different docs
* added most images in the dos to the images directory
* moved outliers and drift docs to its own file in the root directory
* deleted servers directory and moved servers.md to the root directory with enhancements
* deleted pipelines dir and moved pipelines.md to the root directory
* deleted inference dir and moved inference.md to the root directory
* deleted explainers dir and moved explainers.md to the root directory
* deleted performance-tests dir and moved .md to the root directory
* deleted experiments dir and moved .md to the root directory
* updated about section to match gitbook's expected format
* updated FAQs section to match gitbook's expected format
* updated pandas query section with choice1.yaml
* mostly moved and renamed files and directories
* updated SUMMARY.md for GitBook
* adding additional images
* restructured development dir
* restructured and reformatted examples dir to match GitBook's md flavor
* added gitbook format to metrics dir
* restructured k8s directory to match GitBooks expected md flavor
* reformatted cli dir
* typos and links fixed
* typos and links fixed
* tentative structured added to the root of the docs
* fixed names in kubernetes section
* GITBOOK-1: changed hard-coded reference to scheduler.proto
* added reference to chainer.proto instead of hard-coded version
* removed hard-coded references and added GitHub Gist pointing to v2 branch
* fixed format and broken links
feat(docs): adding a mention of per component labels and annotations to the docs (SeldonIO#5931)
feat(docs): add documentation for HPA-based autoscaling (SeldonIO#5935)
 This describes a solution for scaling both Models and Servers based on HPA for
 the case of single-model serving. In the example described in the docs, the
 scaling is done based on Model RPS metrics fetched from Prometheus.
  • Loading branch information
ramonpzg authored and lc525 committed Oct 2, 2024
1 parent 753ec3a commit b10947a
Show file tree
Hide file tree
Showing 384 changed files with 50,426 additions and 4,597 deletions.
63 changes: 63 additions & 0 deletions docs-gb/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# About

Seldon V2 APIs provide a state of the art solution for machine learning inference which
can be run locally on a laptop as well as on Kubernetes for production.

{% embed url="https://www.youtube.com/watch?v=ar5lSG_idh4" %}

## Features

* A single platform for inference of wide range of standard and custom artifacts.
* Deploy locally in Docker during development and testing of models.
* Deploy at scale on Kubernetes for production.
* Deploy single models to multi-step pipelines.
* Save infrastructure costs by deploying multiple models transparently in inference servers.
* Overcommit on resources to deploy more models than available memory.
* Dynamically extended models with pipelines with a data-centric perspective backed by Kafka.
* Explain individual models and pipelines with state of the art explanation techniques.
* Deploy drift and outlier detectors alongside models.
* Kubernetes Service mesh agnostic - use the service mesh of your choice.


## Core features and comparison to Seldon Core V1 APIs

Our V2 APIs separate out core tasks into separate resources allowing users to get started fast
with deploying a Model and the progressing to more complex Pipelines, Explanations and Experiments.

![intro](images/intro.png)

## Multi-model serving

Seldon transparently will provision your model onto the correct inference server.

![mms1](images/multimodel1.png)

By packing multiple models onto a smaller set of servers users can save infrastructure costs and
efficiently utilize their models.

![mms2](images/mms.png)

By allowing over-commit users can provision model models that available memory resources by
allowing Seldon to transparently unload models that are not in use.

![mms3](images/overcommit.png)

## Inference Servers

Seldon V2 supports any V2 protocol inference server. At present we include Seldon's MLServer and NVIDIA's Triton inference server automatically on install. These servers cover a wide range of artifacts including custom python models.

![servers](images/servers.png)

## Service Mesh Agnostic

Seldon core v2 can be integrated with any Kubernetes service mesh. There are current examples with istio, Ambassador and Traefic.

![mesh](images/mesh.png)

## Publication

These features are influenced by our position paper on the next generation of ML model serving frameworks:

*Title*: [Desiderata for next generation of ML model serving](http://arxiv.org/abs/2210.14665)

*Workshop*: Challenges in deploying and monitoring ML systems workshop - NeurIPS 2022
127 changes: 127 additions & 0 deletions docs-gb/SUMMARY.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
# Table of contents

* [Home](README.md)
* [Getting Started](getting-started/README.md)
* [Docker Installation](getting-started/docker-installation.md)
* [Kubernetes Installation](getting-started/kubernetes-installation/README.md)
* [Ansible](getting-started/kubernetes-installation/ansible.md)
* [Helm](getting-started/kubernetes-installation/helm.md)
* [Security](getting-started/kubernetes-installation/security/README.md)
* [AWS MSK mTLS](getting-started/kubernetes-installation/security/aws-msk-mtls.md)
* [AWS MSK SASL](getting-started/kubernetes-installation/security/aws-msk-sasl.md)
* [Azure Event Hub SASL Example](getting-started/kubernetes-installation/security/azure-event-hub-sasl.md)
* [Confluent Cloud Oauth 2.0 Example](getting-started/kubernetes-installation/security/confluent-oauth.md)
* [Confluent Cloud SASL Example](getting-started/kubernetes-installation/security/confluent-sasl.md)
* [Strimzi mTLS Example](getting-started/kubernetes-installation/security/strimzi-mtls.md)
* [Strimzi SASL Example](getting-started/kubernetes-installation/security/strimzi-sasl.md)
* [Reference](getting-started/kubernetes-installation/security/reference.md)
* [Configuration](getting-started/configuration.md)
* [Seldon CLI](getting-started/cli.md)
* [APIs](apis/README.md)
* [Internal](apis/internal/README.md)
* [Chainer](apis/internal/chainer.md)
* [Agent](apis/internal/agent.md)
* [Inference](apis/inference/README.md)
* [Open Inference Protocol](apis/inference/v2.md)
* [Scheduler](apis/scheduler.md)
* [Architecture](architecture/README.md)
* [DataFlow](architecture/dataflow.md)
* [Examples](examples/README.md)
* [Local examples](examples/local-examples.md)
* [Kubernetes examples](examples/k8s-examples.md)
* [Huggingface models](examples/huggingface.md)
* [Model zoo](examples/model-zoo.md)
* [Artifact versions](examples/multi-version.md)
* [Pipeline examples](examples/pipeline-examples.md)
* [Pipeline to pipeline examples](examples/pipeline-to-pipeline.md)
* [Explainer examples](examples/explainer-examples.md)
* [Custom Servers](examples/custom-servers.md)
* [Local experiments](examples/local-experiments.md)
* [Experiment version examples](examples/experiment-versions.md)
* [Inference examples](examples/inference.md)
* [Tritonclient examples](examples/tritonclient-examples.md)
* [Batch Inference examples (kubernetes)](examples/batch-examples-k8s.md)
* [Batch Inference examples (local)](examples/batch-examples-local.md)
* [Checking Pipeline readiness](examples/pipeline-ready-and-metadata.md)
* [Multi-Namespace Kubernetes](examples/k8s-clusterwide.md)
* [Huggingface speech to sentiment with explanations pipeline](examples/speech-to-sentiment.md)
* [Production image classifier with drift and outlier monitoring](examples/cifar10.md)
* [Production income classifier with drift, outlier and explanations](examples/income.md)
* [Conditional pipeline with pandas query model](examples/pandasquery.md)
* [Kubernetes Server with PVC](examples/k8s-pvc.md)
* [Local Overcommit](examples/k8s-pvc.md)
* [Kubernetes](kubernetes/README.md)
* [Scaling](kubernetes/scaling.md)
* [Autoscaling](kubernetes/autoscaling.md)
* [HPA Autoscaling in single-model serving](kubernetes/hpa-rps-autoscaling.md)
* [Tracing](kubernetes/tracing.md)
* [Storage Secrets](kubernetes/storage-secrets.md)
* [Kafka](kubernetes/kafka.md)
* [Metrics](kubernetes/metrics.md)
* [Resources](kubernetes/resources/README.md)
* [Model](kubernetes/resources/model.md)
* [Experiment](kubernetes/resources/experiment.md)
* [Pipeline](kubernetes/resources/pipeline.md)
* [Server](kubernetes/resources/server.md)
* [Server Config](kubernetes/resources/serverconfig.md)
* [Server Runtime](kubernetes/resources/seldonruntime.md)
* [Seldon Config](kubernetes/resources/seldonconfig.md)
* [Service Meshes](kubernetes/service-meshes/README.md)
* [Ambassador](kubernetes/service-meshes/ambassador.md)
* [Istio](kubernetes/service-meshes/istio.md)
* [Traefik](kubernetes/service-meshes/traefik.md)
* [Resource allocation](resource-allocation/README.md)
* [Example: Serving models on dedicated GPU nodes](resource-allocation/example-serving-models-on-dedicated-gpu-nodes.md)
* [Models](models/README.md)
* [Multi-Model Serving](models/mms.md)
* [Inference Artifacts](models/inference-artifacts.md)
* [rClone](models/rclone.md)
* [Parameterized Models](models/parameterized-models/README.md)
* [Pandas Query](models/parameterized-models/pandasquery.md)
* [Metrics](metrics/README.md)
* [Usage](metrics/usage.md)
* [Operational](metrics/operational.md)
* [Local Metrics](metrics/local-metrics-test.md)
* [Development](development/README.md)
* [License](development/licenses.md)
* [Release](development/release.md)
* [CLI](cli/README.md)
* [Seldon](cli/seldon.md)
* [Config](cli/seldon\_config.md)
* [Config Activate](cli/seldon\_config\_activate.md)
* [Config Deactivate](cli/seldon\_config\_deactivate.md)
* [Config Add](cli/seldon\_config\_add.md)
* [Config List](cli/seldon\_config\_list.md)
* [Config Remove](cli/seldon\_config\_remove.md)
* [Experiment](cli/seldon\_experiment.md)
* [Experiment Start](cli/seldon\_experiment\_start.md)
* [Experiment Status](cli/seldon\_experiment\_status.md)
* [Experiment List](cli/seldon\_experiment\_list.md)
* [Experiment Stop](cli/seldon\_experiment\_stop.md)
* [Model](cli/seldon\_model.md)
* [Model Status](cli/seldon\_model\_status.md)
* [Model Load](cli/seldon\_model\_load.md)
* [Model List](cli/seldon\_model\_list.md)
* [Model Infer](cli/seldon\_model\_infer.md)
* [Model Metadata](cli/seldon\_model\_metadata.md)
* [Model Unload](cli/seldon\_model\_unload.md)
* [Pipeline](cli/seldon\_pipeline.md)
* [Pipeline Load](cli/seldon\_pipeline\_load.md)
* [Pipeline Status](cli/seldon\_pipeline\_status.md)
* [Pipeline List](cli/seldon\_pipeline\_list.md)
* [Pipeline Inspect](cli/seldon\_pipeline\_inspect.md)
* [Pipeline Infer](cli/seldon\_pipeline\_infer.md)
* [Pipeline Unload](cli/seldon\_pipeline\_unload.md)
* [Server](cli/seldon\_server.md)
* [Server List](cli/seldon\_server\_list.md)
* [Server Status](cli/seldon\_server\_status.md)
* [Pipelines](pipelines.md)
* [Experiments](experiments.md)
* [Servers](servers.md)
* [Inference](inference.md)
* [Outlier Detection](outlier.md)
* [Drift Detection](drift.md)
* [Explainers](explainers.md)
* [Performance Tests](performance-tests.md)
* [Upgrading](upgrading.md)
* [FAQ](faqs.md)
7 changes: 7 additions & 0 deletions docs-gb/apis/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# APIs

Seldon provides APIs for management and inference.

* [API for inference](./inference/README.md)
* [Scheduler API for management](./scheduler/README.md) (Advanced)
* [Internal APIs](./internal/README.md) (Reference)
Original file line number Diff line number Diff line change
Expand Up @@ -2,17 +2,6 @@

Seldon inference servers must respect the following API specification.

* [Seldon, KServe, NVIDIA V2 Inference API Spec](./v2.md)
* [Seldon, KServe, NVIDIA V2 Inference API Spec](./v2.md)

In future, Seldon may provide extensions for use with Pipelines, Experiments and Explainers.

```{toctree}
:maxdepth: 1
:hidden:
v2.md
```




Loading

0 comments on commit b10947a

Please sign in to comment.