Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add bound constraints to the Formulation object #155

Merged
merged 6 commits into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions src/predictors/Affine.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ julia> using JuMP, MathOptAI

julia> model = Model();

julia> @variable(model, x[1:2]);
julia> @variable(model, 0 <= x[i in 1:2] <= i);

julia> f = MathOptAI.Affine([2.0 3.0], [4.0])
Affine(A, b) [input: 2, output: 1]
Expand All @@ -37,7 +37,9 @@ julia> formulation
Affine(A, b) [input: 2, output: 1]
├ variables [1]
│ └ moai_Affine[1]
└ constraints [1]
└ constraints [3]
├ moai_Affine[1] ≥ 4
├ moai_Affine[1] ≤ 12
└ 2 x[1] + 3 x[2] - moai_Affine[1] = -4

julia> y, formulation =
Expand Down Expand Up @@ -75,6 +77,7 @@ function add_predictor(model::JuMP.AbstractModel, predictor::Affine, x::Vector)
m = size(predictor.A, 1)
y = JuMP.@variable(model, [1:m], base_name = "moai_Affine")
bounds = _get_variable_bounds.(x)
cons = Any[]
for i in 1:size(predictor.A, 1)
y_lb, y_ub = predictor.b[i], predictor.b[i]
for j in 1:size(predictor.A, 2)
Expand All @@ -83,9 +86,9 @@ function add_predictor(model::JuMP.AbstractModel, predictor::Affine, x::Vector)
y_ub += a_ij * ifelse(a_ij >= 0, ub, lb)
y_lb += a_ij * ifelse(a_ij >= 0, lb, ub)
end
_set_bounds_if_finite(y[i], y_lb, y_ub)
_set_bounds_if_finite(cons, y[i], y_lb, y_ub)
end
cons = JuMP.@constraint(model, predictor.A * x .+ predictor.b .== y)
append!(cons, JuMP.@constraint(model, predictor.A * x .+ predictor.b .== y))
return y, Formulation(predictor, y, cons)
end

Expand Down
4 changes: 3 additions & 1 deletion src/predictors/Pipeline.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,9 @@ ReLUQuadratic()
├ variables [2]
│ ├ moai_ReLU[1]
│ └ moai_z[1]
└ constraints [2]
└ constraints [4]
├ moai_ReLU[1] ≥ 0
├ moai_z[1] ≥ 0
├ moai_Affine[1] - moai_ReLU[1] + moai_z[1] = 0
└ moai_ReLU[1]*moai_z[1] = 0
```
Expand Down
84 changes: 51 additions & 33 deletions src/predictors/ReLU.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ julia> using JuMP, MathOptAI

julia> model = Model();

julia> @variable(model, x[1:2]);
julia> @variable(model, -1 <= x[i in 1:2] <= i);

julia> f = MathOptAI.ReLU()
ReLU()
Expand All @@ -34,9 +34,11 @@ ReLU()
├ variables [2]
│ ├ moai_ReLU[1]
│ └ moai_ReLU[2]
└ constraints [4]
└ constraints [6]
├ moai_ReLU[1] ≥ 0
├ moai_ReLU[1] ≤ 1
├ moai_ReLU[2] ≥ 0
├ moai_ReLU[2] ≤ 2
├ moai_ReLU[1] - max(0.0, x[1]) = 0
└ moai_ReLU[2] - max(0.0, x[2]) = 0

Expand All @@ -57,12 +59,10 @@ ReducedSpace(ReLU())
struct ReLU <: AbstractPredictor end

function add_predictor(model::JuMP.AbstractModel, predictor::ReLU, x::Vector)
ub = last.(_get_variable_bounds.(x))
y = JuMP.@variable(model, [1:length(x)], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, max.(0, ub))
cons = JuMP.@constraint(model, y .== max.(0, x))
constraints = Any[JuMP.LowerBoundRef.(y); cons]
return y, Formulation(predictor, y, constraints)
cons = _set_direct_bounds(x -> max(0, x), 0, nothing, x, y)
append!(cons, JuMP.@constraint(model, y .== max.(0, x)))
return y, Formulation(predictor, y, cons)
end

function add_predictor(
Expand Down Expand Up @@ -103,17 +103,21 @@ ReLUBigM(100.0)
├ variables [4]
│ ├ moai_ReLU[1]
│ ├ moai_ReLU[2]
│ ├ _[5]
│ └ _[6]
└ constraints [8]
├ _[5] binary
│ ├ moai_z[1]
│ └ moai_z[2]
└ constraints [12]
├ moai_ReLU[1] ≥ 0
├ moai_ReLU[1] ≤ 1
├ moai_ReLU[2] ≥ 0
├ moai_ReLU[2] ≤ 2
├ moai_z[1] binary
├ -x[1] + moai_ReLU[1] ≥ 0
├ moai_ReLU[1] - _[5] ≤ 0
├ -x[1] + moai_ReLU[1] + 3 _[5] ≤ 3
_[6] binary
├ moai_ReLU[1] - moai_z[1] ≤ 0
├ -x[1] + moai_ReLU[1] + 3 moai_z[1] ≤ 3
moai_z[2] binary
├ -x[2] + moai_ReLU[2] ≥ 0
├ moai_ReLU[2] - 2 _[6] ≤ 0
└ -x[2] + moai_ReLU[2] + 3 _[6] ≤ 3
├ moai_ReLU[2] - 2 moai_z[2] ≤ 0
└ -x[2] + moai_ReLU[2] + 3 moai_z[2] ≤ 3
```
"""
struct ReLUBigM <: AbstractPredictor
Expand All @@ -126,14 +130,14 @@ function add_predictor(
x::Vector,
)
m = length(x)
bounds = _get_variable_bounds.(x)
y = JuMP.@variable(model, [1:m], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, max.(0, last.(bounds)))
formulation = Formulation(predictor)
cons = _set_direct_bounds(x -> max(0, x), 0, nothing, x, y)
formulation = Formulation(predictor, Any[], cons)
append!(formulation.variables, y)
for i in 1:m
lb, ub = bounds[i]
lb, ub = _get_variable_bounds(x[i])
z = JuMP.@variable(model, binary = true)
JuMP.set_name(z, "moai_z[$i]")
push!(formulation.variables, z)
push!(formulation.constraints, JuMP.BinaryRef(z))
c = JuMP.@constraint(model, y[i] >= x[i])
Expand Down Expand Up @@ -167,7 +171,7 @@ julia> using JuMP, MathOptAI

julia> model = Model();

julia> @variable(model, x[1:2] >= -1);
julia> @variable(model, -1 <= x[i in 1:2] <= i);

julia> f = MathOptAI.ReLUSOS1()
ReLUSOS1()
Expand All @@ -186,7 +190,13 @@ ReLUSOS1()
│ ├ moai_ReLU[2]
│ ├ moai_z[1]
│ └ moai_z[2]
└ constraints [4]
└ constraints [10]
├ moai_ReLU[1] ≥ 0
├ moai_ReLU[1] ≤ 1
├ moai_ReLU[2] ≥ 0
├ moai_ReLU[2] ≤ 2
├ moai_z[1] ≤ 1
├ moai_z[2] ≤ 1
├ x[1] - moai_ReLU[1] + moai_z[1] = 0
├ x[2] - moai_ReLU[2] + moai_z[2] = 0
├ [moai_ReLU[1], moai_z[1]] ∈ MathOptInterface.SOS1{Float64}([1.0, 2.0])
Expand All @@ -203,11 +213,11 @@ function add_predictor(
m = length(x)
bounds = _get_variable_bounds.(x)
y = JuMP.@variable(model, [i in 1:m], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, max.(0, last.(bounds)))
cons = _set_direct_bounds(x -> max(0, x), 0, nothing, x, y)
z = JuMP.@variable(model, [1:m], lower_bound = 0, base_name = "moai_z")
_set_bounds_if_finite.(z, nothing, -first.(bounds))
cons = JuMP.@constraint(model, x .== y - z)
formulation = Formulation(predictor, Any[y; z], Any[cons;])
_set_bounds_if_finite.(Ref(cons), z, nothing, -first.(bounds))
append!(cons, JuMP.@constraint(model, x .== y - z))
formulation = Formulation(predictor, Any[y; z], cons)
for i in 1:m
c = JuMP.@constraint(model, [y[i], z[i]] in MOI.SOS1([1.0, 2.0]))
push!(formulation.constraints, c)
Expand Down Expand Up @@ -235,7 +245,7 @@ julia> using JuMP, MathOptAI

julia> model = Model();

julia> @variable(model, x[1:2] >= -1);
julia> @variable(model, -1 <= x[i in 1:2] <= i);

julia> f = MathOptAI.ReLUQuadratic()
ReLUQuadratic()
Expand All @@ -254,7 +264,15 @@ ReLUQuadratic()
│ ├ moai_ReLU[2]
│ ├ moai_z[1]
│ └ moai_z[2]
└ constraints [4]
└ constraints [12]
├ moai_ReLU[1] ≥ 0
├ moai_ReLU[1] ≤ 1
├ moai_ReLU[2] ≥ 0
├ moai_ReLU[2] ≤ 2
├ moai_z[1] ≥ 0
├ moai_z[1] ≤ 1
├ moai_z[2] ≥ 0
├ moai_z[2] ≤ 1
├ x[1] - moai_ReLU[1] + moai_z[1] = 0
├ x[2] - moai_ReLU[2] + moai_z[2] = 0
├ moai_ReLU[1]*moai_z[1] = 0
Expand All @@ -271,10 +289,10 @@ function add_predictor(
m = length(x)
bounds = _get_variable_bounds.(x)
y = JuMP.@variable(model, [1:m], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, max.(0, last.(bounds)))
cons = _set_direct_bounds(x -> max(0, x), 0, nothing, x, y)
z = JuMP.@variable(model, [1:m], base_name = "moai_z")
_set_bounds_if_finite.(z, 0, max.(0, -first.(bounds)))
c1 = JuMP.@constraint(model, x .== y - z)
c2 = JuMP.@constraint(model, y .* z .== 0)
return y, Formulation(predictor, Any[y; z], Any[c1; c2])
_set_bounds_if_finite.(Ref(cons), z, 0, max.(0, -first.(bounds)))
append!(cons, JuMP.@constraint(model, x .== y - z))
append!(cons, JuMP.@constraint(model, y .* z .== 0))
return y, Formulation(predictor, Any[y; z], cons)
end
16 changes: 12 additions & 4 deletions src/predictors/Scale.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ julia> using JuMP, MathOptAI

julia> model = Model();

julia> @variable(model, x[1:2]);
julia> @variable(model, 0 <= x[i in 1:2] <= i);

julia> f = MathOptAI.Scale([2.0, 3.0], [4.0, 5.0])
Scale(scale, bias)
Expand All @@ -39,7 +39,11 @@ Scale(scale, bias)
├ variables [2]
│ ├ moai_Scale[1]
│ └ moai_Scale[2]
└ constraints [2]
└ constraints [6]
├ moai_Scale[1] ≥ 4
├ moai_Scale[1] ≤ 6
├ moai_Scale[2] ≥ 5
├ moai_Scale[2] ≤ 11
├ 2 x[1] - moai_Scale[1] = -4
└ 3 x[2] - moai_Scale[2] = -5

Expand Down Expand Up @@ -70,14 +74,18 @@ function add_predictor(model::JuMP.AbstractModel, predictor::Scale, x::Vector)
m = length(predictor.scale)
y = JuMP.@variable(model, [1:m], base_name = "moai_Scale")
bounds = _get_variable_bounds.(x)
cons = Any[]
for (i, scale) in enumerate(predictor.scale)
y_lb = y_ub = predictor.bias[i]
lb, ub = bounds[i]
y_ub += scale * ifelse(scale >= 0, ub, lb)
y_lb += scale * ifelse(scale >= 0, lb, ub)
_set_bounds_if_finite(y[i], y_lb, y_ub)
_set_bounds_if_finite(cons, y[i], y_lb, y_ub)
end
cons = JuMP.@constraint(model, predictor.scale .* x .+ predictor.bias .== y)
append!(
cons,
JuMP.@constraint(model, predictor.scale .* x .+ predictor.bias .== y),
)
return y, Formulation(predictor, y, cons)
end

Expand Down
17 changes: 8 additions & 9 deletions src/predictors/Sigmoid.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ julia> using JuMP, MathOptAI

julia> model = Model();

julia> @variable(model, x[1:2]);
julia> @variable(model, -1 <= x[i in 1:2] <= i);

julia> f = MathOptAI.Sigmoid()
Sigmoid()
Expand All @@ -35,10 +35,10 @@ Sigmoid()
│ ├ moai_Sigmoid[1]
│ └ moai_Sigmoid[2]
└ constraints [6]
├ moai_Sigmoid[1] ≥ 0
├ moai_Sigmoid[2] ≥ 0
├ moai_Sigmoid[1] ≤ 1
├ moai_Sigmoid[2] ≤ 1
├ moai_Sigmoid[1] ≥ 0.2689414213699951
├ moai_Sigmoid[1] ≤ 0.7310585786300049
├ moai_Sigmoid[2] ≥ 0.2689414213699951
├ moai_Sigmoid[2] ≤ 0.8807970779778823
├ moai_Sigmoid[1] - (1.0 / (1.0 + exp(-x[1]))) = 0
└ moai_Sigmoid[2] - (1.0 / (1.0 + exp(-x[2]))) = 0

Expand All @@ -60,10 +60,9 @@ struct Sigmoid <: AbstractPredictor end

function add_predictor(model::JuMP.AbstractModel, predictor::Sigmoid, x::Vector)
y = JuMP.@variable(model, [1:length(x)], base_name = "moai_Sigmoid")
_set_bounds_if_finite.(y, 0, 1)
cons = JuMP.@constraint(model, y .== 1 ./ (1 .+ exp.(-x)))
constraints = Any[JuMP.LowerBoundRef.(y); JuMP.UpperBoundRef.(y); cons]
return y, Formulation(predictor, y, constraints)
cons = _set_direct_bounds(x -> 1 / (1 + exp(-x)), 0, 1, x, y)
append!(cons, JuMP.@constraint(model, y .== 1 ./ (1 .+ exp.(-x))))
return y, Formulation(predictor, y, cons)
end

function add_predictor(
Expand Down
19 changes: 7 additions & 12 deletions src/predictors/SoftMax.jl
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ SoftMax()
│ └ moai_SoftMax[2]
└ constraints [8]
├ moai_SoftMax[1] ≥ 0
├ moai_SoftMax[2] ≥ 0
├ moai_SoftMax[1] ≤ 1
├ moai_SoftMax[2] ≥ 0
├ moai_SoftMax[2] ≤ 1
├ moai_SoftMax_denom ≥ 0
├ moai_SoftMax_denom - (0.0 + exp(x[2]) + exp(x[1])) = 0
Expand Down Expand Up @@ -66,19 +66,14 @@ struct SoftMax <: AbstractPredictor end

function add_predictor(model::JuMP.AbstractModel, predictor::SoftMax, x::Vector)
y = JuMP.@variable(model, [1:length(x)], base_name = "moai_SoftMax")
_set_bounds_if_finite.(y, 0, 1)
cons = Any[]
_set_bounds_if_finite.(Ref(cons), y, 0, 1)
denom = JuMP.@variable(model, base_name = "moai_SoftMax_denom")
JuMP.set_lower_bound(denom, 0)
d_con = JuMP.@constraint(model, denom == sum(exp.(x)))
cons = JuMP.@constraint(model, y .== exp.(x) ./ denom)
constraints = [
JuMP.LowerBoundRef.(y)
JuMP.UpperBoundRef.(y)
JuMP.LowerBoundRef(denom)
d_con
cons
]
return y, Formulation(predictor, [denom; y], constraints)
push!(cons, JuMP.LowerBoundRef(denom))
push!(cons, JuMP.@constraint(model, denom == sum(exp.(x))))
append!(cons, JuMP.@constraint(model, y .== exp.(x) ./ denom))
return y, Formulation(predictor, [denom; y], cons)
end

function add_predictor(
Expand Down
18 changes: 10 additions & 8 deletions src/predictors/SoftPlus.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ julia> using JuMP, MathOptAI

julia> model = Model();

julia> @variable(model, x[1:2]);
julia> @variable(model, -1 <= x[i in 1:2] <= i);

julia> f = MathOptAI.SoftPlus(; beta = 2.0)
SoftPlus(2.0)
Expand All @@ -34,9 +34,11 @@ SoftPlus(2.0)
├ variables [2]
│ ├ moai_SoftPlus[1]
│ └ moai_SoftPlus[2]
└ constraints [4]
├ moai_SoftPlus[1] ≥ 0
├ moai_SoftPlus[2] ≥ 0
└ constraints [6]
├ moai_SoftPlus[1] ≥ 0.0634640055214863
├ moai_SoftPlus[1] ≤ 1.0634640055214863
├ moai_SoftPlus[2] ≥ 0.0634640055214863
├ moai_SoftPlus[2] ≤ 2.0090749639589047
├ moai_SoftPlus[1] - (log(1.0 + exp(2 x[1])) / 2.0) = 0
└ moai_SoftPlus[2] - (log(1.0 + exp(2 x[2])) / 2.0) = 0

Expand Down Expand Up @@ -64,11 +66,11 @@ function add_predictor(
predictor::SoftPlus,
x::Vector,
)
β = predictor.beta
y = JuMP.@variable(model, [1:length(x)], base_name = "moai_SoftPlus")
_set_bounds_if_finite.(y, 0, nothing)
beta = predictor.beta
cons = JuMP.@constraint(model, y .== log.(1 .+ exp.(beta .* x)) ./ beta)
return y, Formulation(predictor, y, Any[JuMP.LowerBoundRef.(y); cons])
cons = _set_direct_bounds(xi -> log(1 + exp(β * xi)) / β, 0, nothing, x, y)
append!(cons, JuMP.@constraint(model, y .== log.(1 .+ exp.(β .* x)) ./ β))
return y, Formulation(predictor, y, cons)
end

function add_predictor(
Expand Down
Loading
Loading