Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix implied variable bounds in ReLU #138

Merged
merged 1 commit into from
Oct 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions src/predictors/ReLU.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ struct ReLU <: AbstractPredictor end
function add_predictor(model::JuMP.AbstractModel, predictor::ReLU, x::Vector)
ub = last.(_get_variable_bounds.(x))
y = JuMP.@variable(model, [1:length(x)], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, ub)
_set_bounds_if_finite.(y, 0, max.(0, ub))
cons = JuMP.@constraint(model, y .== max.(0, x))
constraints = Any[JuMP.LowerBoundRef.(y); cons]
return y, Formulation(predictor, y, constraints)
Expand Down Expand Up @@ -128,7 +128,7 @@ function add_predictor(
m = length(x)
bounds = _get_variable_bounds.(x)
y = JuMP.@variable(model, [1:m], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, last.(bounds))
_set_bounds_if_finite.(y, 0, max.(0, last.(bounds)))
formulation = Formulation(predictor)
append!(formulation.variables, y)
for i in 1:m
Expand Down Expand Up @@ -203,7 +203,7 @@ function add_predictor(
m = length(x)
bounds = _get_variable_bounds.(x)
y = JuMP.@variable(model, [i in 1:m], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, last.(bounds))
_set_bounds_if_finite.(y, 0, max.(0, last.(bounds)))
z = JuMP.@variable(model, [1:m], lower_bound = 0, base_name = "moai_z")
_set_bounds_if_finite.(z, nothing, -first.(bounds))
cons = JuMP.@constraint(model, x .== y - z)
Expand Down Expand Up @@ -271,9 +271,9 @@ function add_predictor(
m = length(x)
bounds = _get_variable_bounds.(x)
y = JuMP.@variable(model, [1:m], base_name = "moai_ReLU")
_set_bounds_if_finite.(y, 0, last.(bounds))
_set_bounds_if_finite.(y, 0, max.(0, last.(bounds)))
z = JuMP.@variable(model, [1:m], base_name = "moai_z")
_set_bounds_if_finite.(z, 0, -first.(bounds))
_set_bounds_if_finite.(z, 0, max.(0, -first.(bounds)))
c1 = JuMP.@constraint(model, x .== y - z)
c2 = JuMP.@constraint(model, y .* z .== 0)
return y, Formulation(predictor, Any[y; z], Any[c1; c2])
Expand Down
54 changes: 18 additions & 36 deletions test/test_Flux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -51,15 +51,13 @@ function test_end_to_end_with_scale()
)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x)
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(
model,
chain,
[x];
config = Dict(Flux.relu => MathOptAI.ReLUBigM(100.0)),
)
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand All @@ -72,15 +70,13 @@ function test_end_to_end_ReLUBigM()
)
model = Model(HiGHS.Optimizer)
set_silent(model)
@variable(model, x)
y, formulation = MathOptAI.add_predictor(
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(
model,
chain,
[x];
config = Dict(Flux.relu => MathOptAI.ReLUBigM(100.0)),
)
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand All @@ -93,17 +89,15 @@ function test_end_to_end_ReLUQuadratic()
)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
y, formulation = MathOptAI.add_predictor(
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(
model,
chain,
[x];
config = Dict(Flux.relu => MathOptAI.ReLUQuadratic()),
)
# Ipopt needs a starting point to avoid the local minima.
set_start_value(only(y), 4.0)
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand All @@ -115,11 +109,10 @@ function test_end_to_end_ReLU()
Flux.Chain(Flux.Dense(1 => 16, Flux.relu), Flux.Dense(16 => 1)),
)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
y, formulation = MathOptAI.add_predictor(model, chain, [x])
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
# set_silent(model)
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(model, chain, [x])
print(model)
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand All @@ -132,11 +125,8 @@ function test_end_to_end_ReLU_reduced_space()
)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
y, formulation =
MathOptAI.add_predictor(model, chain, [x]; reduced_space = true)
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(model, chain, [x]; reduced_space = true)
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand All @@ -149,10 +139,8 @@ function test_end_to_end_SoftPlus()
)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
y, formulation = MathOptAI.add_predictor(model, chain, [x])
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(model, chain, [x])
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand All @@ -165,10 +153,8 @@ function test_end_to_end_Sigmoid()
)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
y, formulation = MathOptAI.add_predictor(model, chain, [x])
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(model, chain, [x])
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand All @@ -181,10 +167,8 @@ function test_end_to_end_Tanh()
)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x)
y, formulation = MathOptAI.add_predictor(model, chain, [x])
@constraint(model, only(y) <= 4)
@objective(model, Min, x)
@variable(model, x == -1.2)
y, _ = MathOptAI.add_predictor(model, chain, [x])
optimize!(model)
@test is_solved_and_feasible(model)
@test isapprox(value.(y), chain(Float32[value(x)]); atol = 1e-2)
Expand Down Expand Up @@ -299,10 +283,8 @@ function test_end_to_end_Softmax()
chain = Flux.Chain(Flux.Dense(2 => 3), Flux.softmax)
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, x[1:2])
@variable(model, x[i in 1:2] == i)
y, _ = MathOptAI.add_predictor(model, chain, x)
@constraint(model, x[1] == 1.0)
@constraint(model, x[2] == 2.0)
optimize!(model)
@test is_solved_and_feasible(model)
y_val = chain(Float32.(value.(x)))
Expand Down
22 changes: 22 additions & 0 deletions test/test_predictors.jl
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,28 @@ function test_ReLU_direct()
return
end

function test_ReLU_bounds()
values = [-2, 0, 2]
for f in (
MathOptAI.ReLU(),
MathOptAI.ReLUBigM(100.0),
MathOptAI.ReLUQuadratic(),
MathOptAI.ReLUSOS1(),
)
for lb in values, ub in values
if lb > ub
continue
end
model = Model()
@variable(model, lb <= x <= ub)
y, _ = MathOptAI.add_predictor(model, f, [x])
@test lower_bound.(y) == [0.0]
@test upper_bound.(y) == [max(0.0, ub)]
end
end
return
end

function test_ReducedSpace_ReLU_direct()
model = Model(Ipopt.Optimizer)
set_silent(model)
Expand Down
Loading