Skip to content

Commit

Permalink
Merge branch 'main' into wfh/provisioning_cursor_reuse
Browse files Browse the repository at this point in the history
  • Loading branch information
hinthornw committed Dec 3, 2024
2 parents 642e175 + 15f0765 commit 61d51ec
Show file tree
Hide file tree
Showing 2 changed files with 69 additions and 5 deletions.
4 changes: 2 additions & 2 deletions docs/docs/tutorials/langgraph-platform/local-server.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,10 @@ Create a new app from the `react-agent` template. This template is a simple agen

## Install Dependencies

In the root of your new LangGraph app, install the dependencies:
In the root of your new LangGraph app, install the dependencies in `edit` mode so your local changes are used by the server:

```shell
pip install .
pip install -e .
```

## Create a `.env` file
Expand Down
70 changes: 67 additions & 3 deletions libs/checkpoint-postgres/langgraph/store/postgres/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@ class Migration(NamedTuple):

sql: str
params: Optional[dict[str, Any]] = None
condition: Optional[Callable[["BasePostgresStore"], bool]] = None


MIGRATIONS: Sequence[str] = [
Expand Down Expand Up @@ -104,11 +105,29 @@ class Migration(NamedTuple):
),
},
),
# TODO: Add an HNSW or IVFFlat index depending on config
# First must improve the search query when filtering by
# namespace
Migration(
"""
CREATE INDEX IF NOT EXISTS store_vectors_embedding_idx ON store_vectors
USING %(index_type)s (embedding %(ops)s)%(index_params)s;
""",
condition=lambda store: bool(
store.index_config and _get_index_params(store)[0] != "flat"
),
params={
"index_type": lambda store: _get_index_params(store)[0],
"ops": lambda store: _get_vector_type_ops(store),
"index_params": lambda store: (
" WITH ("
+ ", ".join(f"{k}={v}" for k, v in _get_index_params(store)[1].items())
+ ")"
if _get_index_params(store)[1]
else ""
),
},
),
]


C = TypeVar("C", bound=Union[_pg_internal.Conn, _ainternal.Conn])


Expand Down Expand Up @@ -140,6 +159,8 @@ class PoolConfig(TypedDict, total=False):
class ANNIndexConfig(TypedDict, total=False):
"""Configuration for vector index in PostgreSQL store."""

kind: Literal["hnsw", "ivfflat", "flat"]
"""Type of index to use: 'hnsw' for Hierarchical Navigable Small World, or 'ivfflat' for Inverted File Flat."""
vector_type: Literal["vector", "halfvec"]
"""Type of vector storage to use.
Options:
Expand All @@ -148,6 +169,35 @@ class ANNIndexConfig(TypedDict, total=False):
"""


class HNSWConfig(ANNIndexConfig, total=False):
"""Configuration for HNSW (Hierarchical Navigable Small World) index."""

kind: Literal["hnsw"] # type: ignore[misc]
m: int
"""Maximum number of connections per layer. Default is 16."""
ef_construction: int
"""Size of dynamic candidate list for index construction. Default is 64."""


class IVFFlatConfig(ANNIndexConfig, total=False):
"""IVFFlat index divides vectors into lists, and then searches a subset of those lists that are closest to the query vector. It has faster build times and uses less memory than HNSW, but has lower query performance (in terms of speed-recall tradeoff).
Three keys to achieving good recall are:
1. Create the index after the table has some data
2. Choose an appropriate number of lists - a good place to start is rows / 1000 for up to 1M rows and sqrt(rows) for over 1M rows
3. When querying, specify an appropriate number of probes (higher is better for recall, lower is better for speed) - a good place to start is sqrt(lists)
"""

kind: Literal["ivfflat"] # type: ignore[misc]
nlist: int
"""Number of inverted lists (clusters) for IVF index.
Determines the number of clusters used in the index structure.
Higher values can improve search speed but increase index size and build time.
Typically set to the square root of the number of vectors in the index.
"""


class PostgresIndexConfig(IndexConfig, total=False):
"""Configuration for vector embeddings in PostgreSQL store with pgvector-specific options.
Expand Down Expand Up @@ -774,6 +824,8 @@ def _get_version(cur: Cursor[dict[str, Any]], table: str) -> int:
for v, migration in enumerate(
self.VECTOR_MIGRATIONS[version + 1 :], start=version + 1
):
if migration.condition and not migration.condition(self):
continue
sql = migration.sql
if migration.params:
params = {
Expand Down Expand Up @@ -832,6 +884,18 @@ def _get_vector_type_ops(store: BasePostgresStore) -> str:
return f"{type_prefix}_{distance_suffix}"


def _get_index_params(store: Any) -> tuple[str, dict[str, Any]]:
"""Get the index type and configuration based on config."""
if not store.index_config:
return "hnsw", {}

config = cast(PostgresIndexConfig, store.index_config)
index_config = config.get("ann_index_config", _DEFAULT_ANN_CONFIG).copy()
kind = index_config.pop("kind", "hnsw")
index_config.pop("vector_type", None)
return kind, index_config


def _namespace_to_text(
namespace: tuple[str, ...], handle_wildcards: bool = False
) -> str:
Expand Down

0 comments on commit 61d51ec

Please sign in to comment.