Skip to content

Commit

Permalink
[6.7.6]
Browse files Browse the repository at this point in the history
  • Loading branch information
kyegomez committed Dec 23, 2024
1 parent a641536 commit 9db340b
Show file tree
Hide file tree
Showing 2 changed files with 147 additions and 0 deletions.
80 changes: 80 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -1840,6 +1840,86 @@ result = mixture_router.run("Evaluate the potential acquisition of TechStartup I
```


-------

## GroupChat

A production-grade multi-agent system enabling sophisticated group conversations between AI agents with customizable speaking patterns, parallel processing capabilities, and comprehensive conversation tracking.


````python

import os
from dotenv import load_dotenv
from swarm_models import OpenAIChat
from swarms import Agent, GroupChat, expertise_based


if __name__ == "__main__":

load_dotenv()

# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")

# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key,
model_name="gpt-4o-mini",
temperature=0.1,
)

# Example agents
agent1 = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt="You are a financial analyst specializing in investment strategies.",
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string",
streaming_on=False,
)

agent2 = Agent(
agent_name="Tax-Adviser-Agent",
system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string",
streaming_on=False,
)

agents = [agent1, agent2]

chat = GroupChat(
name="Investment Advisory",
description="Financial and tax analysis group",
agents=agents,
speaker_fn=expertise_based,
)

history = chat.run(
"How to optimize tax strategy for investments?"
)
print(history.model_dump_json(indent=2))

```

--------


----------

Expand Down
67 changes: 67 additions & 0 deletions group_chat_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@

import os
from dotenv import load_dotenv
from swarm_models import OpenAIChat
from swarms import Agent, GroupChat, expertise_based


if __name__ == "__main__":

load_dotenv()

# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")

# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key,
model_name="gpt-4o-mini",
temperature=0.1,
)

# Example agents
agent1 = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt="You are a financial analyst specializing in investment strategies.",
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string",
streaming_on=False,
)

agent2 = Agent(
agent_name="Tax-Adviser-Agent",
system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string",
streaming_on=False,
)

agents = [agent1, agent2]

chat = GroupChat(
name="Investment Advisory",
description="Financial and tax analysis group",
agents=agents,
speaker_fn=expertise_based,
)

history = chat.run(
"How to optimize tax strategy for investments?"
)
print(history.model_dump_json(indent=2))

0 comments on commit 9db340b

Please sign in to comment.